

SemIndex+: a Semantic Indexing Scheme for Structured,

Unstructured, and Partly Structured Data

Joe Tekli

*

E.C.E. Department

Lebanese American Univ.

36, Byblos, Lebanon

joe.tekli@lau.edu.lb

Richard Chbeir

Univ. of Pau & Pays Adour

ES2/UPPA
64600 Anglet, France

richard.chbeir@univ-pau.fr

Agma J.M. Traina

ICMC Institute

University of Sao Paulo,

13566 Sao Carlos, Brazil

agma@icmc.usp.br

Caetano Traina Jr.

ICMC Institute

University of Sao Paulo,

13566 Sao Carlos, Brazil

caetano@icmc.usp.br

Abstract. While Information Retrieval (IR) systems have gained success in Web-style search engines in the past

two decades, nonetheless, the DataBase (DB) paradigm remains prevalent in handling data in enterprise

environments and digital libraries, and is gaining even more importance in the Semantic Web with the increasing

need to handle partly structured (NoSQL) data. This paper describes SemIndex+, a semantic-aware indexing and

querying framework that allows semantic search, result selection, and result ranking of structured (relational DB-

style), unstructured (IR-style), and partly structured (NoSQL) data. Various weighting functions and a parallelized

search algorithm have been developed for that purpose and are presented here. We provide a general keyword

query model allowing the user to choose the results’ semantic coverage and expressiveness based on her needs.

Different from alternative solutions involving query relaxation, query refinement, or query disambiguation, our

approach incorporates semantics at the most basic data indexing level: providing more opportunities toward

speedups and semantic coverage. An extensive experimental evaluation, comparing SemIndex+ with alternative

methods, highlights our approach’s flexibility and effectiveness, which in turn impact efficiency (requiring less or

more time following the user specified index and query semantic coverages).

Keywords: Semantic Queries, Inverted index, NoSQL indexing, Semantic Network, Semantic-aware data

processing, Textual databases, Query Relaxation, Semantic Disambiguation.

1. Introduction

Full-text search techniques originally developed in Information Retrieval (IR) systems, and more recently imbedded

in DataBase (DB) systems, aim at providing the most relevant textual data objects (e.g., documents in IR, or tuples in

a DB) to a user query consisting of a set of keywords [9, 10, 30]. The brute force approach is to sequentially scan the

data objects in the collection, in order to search for terms matching those of the user query, which could be extremely

inefficient for big data collections. Most IR/DB systems use some sort of indexing to speed up the search process.

Currently, the foremost indexing structure used with full-text search is the inverted index model [56, 61, 79]. Inverted

indexes associate each term in the text with a list of pointers to the data objects that contain the term, in the form of a

list of (term, objectIDs[]).Then, when an enquiry is performed, the index is queried with every term within the user

query, identifying as candidate results all data objects that contain the query terms in just one scan of the index [9].

The inverted index is widely adopted for full-text indexing of large textual collections [9], and is supported by many

DBMSs1 for storing and handling structured data (cf. Table 1) [4, 9], unstructured data (cf. Table 2) [30, 60], as well

as partly structured2 data (cf. Table 3) [40, 86]. Yet, as full-text search systems became available to non-expert users,

keyword queries become noisier, where non-experts have poor or no knowledge about the data being searched. As a

result, they tend to formulate query keywords which are often syntactically different from those used in indexing

relevant documents in the DB [39], thus returning non-relevant results or completely missing relevant ones.

1.1. Motivation Examples

To illustrate this, consider a textual data collection from a movie database, where each movie in is identified with

an ID and is described with some text, including the movie title, year, plot, genre, and info. The data collection can be

presented in different forms: i) structured, following the traditional relational (SQL) DB model, noted Struct as shown

* Corresponding author. This study was partly conducted during the author’s Fulbright Visiting Scholar research mission conducted in the Computer

and Information Science Department, University of Michigan, Dearborn, USA
1 Database Management Systems.
2 We use the expression partly structured, to distinguish basic NoSQL data consisting of attribute-value items, from hierarchically structured data

such as XML and RDF-based serializations, which are commonly referred to as semi-structured data [81]. The latter are out of the scope of this

paper, and will be addressed in a dedicated study.

in Table 1, ii) unstructured, made of free text, noted Free as shown in Table 2, or iii) partly structured, following the

basic attribute-value (NoSQL) DB model, noted Part as shown in Table 3.

Table 1. Sample movies data collection extracted from IMBD1, provided in the form of structured text, noted Struct.

ID title year plot genre info

O1
When a
Stranger

calls

2006
A young high school student babysits for a very rich
family. She begins to receive strange phone calls

threatening the children...

Horror,

Thriller

When the Mandrakises

were about to leave…

O2
Days of
Thunder

1990

Cole Trickle is a young racer from California with years

of experience in open-wheel racing winning

championships in Sprint car racing…

Action,
Drama

In the clip from the
race at Rockingham…

O3
The Sound
of Music

1965

Maria had longed to be a nun since she was a young

girl, yet when she became old enough discovered that it

wasn’t at all what she thought...

Drama,
Family

The 1996 video fits the
movie onto one VHS…

Table 2. Sample data collection from IMBD (cf. Table 1), provided in the form of unstructured free text, noted Free.

ID description

O1
When a Stranger Calls (2006), Horror, Thriller: A young high school student babysits for a very rich

family. Driving by the house, a strange car...

O2
Days of Thunder (1990), Action, Drama: Cole Trickle is a young racer from California with years of

experience in open-wheel racing winning championships in Sprint car racing…

O3
Sound of Music, The (1965), Drama, Family: Maria had longed to be a nun since she was a young girl, yet

when she became old enough discovered that it wasn’t at all what she thought...

Table 3. Sample data collection from IMBD (cf. Table 1), provided in the form of partly structured text, noted Part.

ID: O1
title: When a

Stranger Calls
year:

2006

plot: A young high school student
babysits for a very rich family. Driving

by the house, a strange car…

genre:
Horror,

Thriller

info: When the
Mandrakises were about

to leave…

ID: O2
description: Days of Thunder (1990), Action, Drama: Cole Trickle is a young racer from California

with years of experience in open-wheel racing winning championships in Sprint car racing…

ID: O3
title: The Sound

of Music

plot: Maria had longed to be a nun since she was a young
girl, yet when she became old enough discovered that it

wasn’t at all what she thought...

genre: Drama,

Family

Consider keyword-based queries q1, q2, and q3 applied respectively on each the above data collections, formulated

as standard DB selection () containment () queries (formally described in Section 5): q1 = σtitle (“sound”, “of”,

“music”)
ΔStruct, q2 = σdescription (“open-wheel”, “racer”)

ΔFree, and q3 = σgenre (“thriller”)ΔPart. The search result for query q1 is

movie O3 (from ΔStruct) which title attribute contains occurrences of each of the query’s terms. Similarly, search results

for q2 and q3 are: O2 (from ΔFree) and O1 (from ΔPart) respectively. Yet, if the user wants to search for a particular

movie but cannot recall its exact title, plot, or genre descriptions, she will likely use her own terminology in choosing

query terms which (we naturally assume) are lexically and/or semantically similar to the movie’s description terms,

e.g., “voice of melody”, “auto rallying”, or “suspense”. Such terms might not exactly match those used to describe

(and index) the movie objects (which is the case in our examples), and thus will miss movies O1, O2, and O3 as relevant

results. As a matter of fact, there are typically many ways to specify a given concept: as textual descriptions may

involve terms with multiple meanings (homonymy, e.g., term “sound” could mean a particular auditory effect or a

narrow channel in the sea paper sheet according to a general purpose knowledge base such as WordNet [66]), terms

implied by other terms (metonymy, e.g., term “thunder” implies “lightning”, and “nun” implies “religion”), several

terms having the same meaning (synonymy, e.g., terms “thunder”, “roar”, and “boom” all refer to the same meaning: a

deep prolonged loud noise), or terms related by some semantic relationships (e.g., hypernymy (isA), holonymy

(partOf), such as thunder-isA-noise, or engine-partOf-car). Therefore, the terms used as keywords in a user's query

might literally match terms in irrelevant movie objects (decreasing search precision2), or might completely miss

relevant movies where no exact query term matches are identified (decreasing search recall
1
). In addition, the movie

1 Internet Movie DataBase (http://www.imdb.com/).
2 Precision highlights the percentage of correctly selected results, whereas recall designates the percentage of wrongly missed results (i.e.,

results that should have been selected, cf. Section 7.6).

objects might not be extensively described or well-tagged in the DB, or might not be described using the same

attributes: namely in a partly structured DB (cf. Table 3).

This shows that the standard inverted index cannot deal with these cases. Solving this issue has been the main

motivation for developing so-called semantic-aware or knowledge-aware (keyword) query systems, which have

emerged since the past decade as a natural extension of traditional containment queries, encouraged by (non-expert)

user demands. Most existing works in this area (cf. Background in Section 2) have incorporated semantic knowledge

at the query processing level, to: i) pre-process queries using query relaxation and rewriting [17, 27, 64], ii)

disambiguate queries using semantic disambiguation and entity recognition techniques [17, 58, 71], and/or iii) post-

process query results using query refinement and results re-ranking [71, 80, 88]. Yet, various challenges remain

unsolved, namely: i) time latencies when involving query pre-processing and post-processing [27, 64], ii) reduced

quality of query relaxation/rewriting and query disambiguation results: requiring context information (e.g., expanded

queries, user profiles, or query logs) which are not always available [19, 32], and iii) limited user involvement, where

the user is usually constrained to providing feedback and/or performing query refinement only after the first round of

results has been provided by the system [21, 67].

1.2. Proposal Overview

In this work, we adopt another alternative: building a semantic-aware inverted index called SemIndex+, integrating

textual information with domain knowledge (not only at the querying level, but rather) at the most basic data indexing

level, in order to support semantic-aware querying and answer most challenges identified above. Fig. 1 depicts the

overall framework of our approach and its main components. Briefly, SemIndex+ maps two data resources, namely a

textual data collection (represented as an inverted index), and a semantic knowledge base (represented as a semantic

network) into a single and tightly coupled semantic-aware data structure. This is performed offline – prior to online

query execution, providing more opportunities toward both speed-ups and semantic-based filtering, thus minimizing

the need for query pre- and post-processing.

Fig. 1. Overall architecture of the SemIndex+ framework (added components are highlighted in red).

An initial solution design titled SemIndex was given in [23] aimed at indexing unstructured (free-text) data only.

This paper introduces SemIndex+, a new framework allowing to index and search unstructured, structured (relational),

and partly structured (NoSQL) textual data. SemIndex+’s main additions to the previous framework are highlighted in

Fig. 1. At the indexer level, we add: i) an extension of SemIndex’s logical design to handle varying multi-attribute

datasets (using attribute sensitive indexers), ii) a dedicated algorithm to handle terms with missing semantic

connections (which we designate as missing terms), and iii) a mathematical model for weighting SemIndex+ entries

(i.e., the graph’s nodes and edges). At the query processing level, we develop: iii) a parallelized (multithreaded) query

processing algorithm, coupled with iv) a dedicated relevance scoring measure, required in the query evaluation

process to retrieve and rank relevant query answers. In addition, we add: iv) a detailed complexity analysis covering

the new index construction and querying algorithms, and v) an extensive experimental study comparing SemIndex+’s

effectiveness and efficiency with various generic approaches (including inverted index search, query relaxation, query

disambiguation, and query refinement). Results highlight SemIndex+’s flexibility (involving the user in the whole

process: during initial index building, query writing, and then query refinement) and effectiveness (producing

significantly more semantically relevant results compared with existing solutions) which in turn affect its efficiency

(requiring less or more processing time following user-specified index and query semantic coverages).

The rest of this paper is organized as follows. Section 2 briefly reviews related works. Section 3 describes

SemIndex+’s input resources. Section 4 develops SemIndex+’s design, including the index construction process and

weighting functions. Section 5 develops SemIndex+’s query model and query processing algorithm. The

computational complexity of SemIndex+ construction and querying algorithms is provided in Section 6. Experimental

results are presented in Section 7. Section 8 concludes the paper with ongoing and future directions.

Parallel

Relevance
Scoring

Solving Missing Terms

Weighting SemIndex+ Graph

Object-Attribute Indexing

Term-Attribute Indexing

Generating DB

2. Related Works

2.1. Keyword Search in Textual Databases

Early approaches on keyword search queries for RDBs use traditional IR scores (e.g., TF-IDF) to find ways to join

tuples from different tables in order to answer a given keyword query [4, 35, 47]. The proposed search algorithms

focus on enumeration of join networks called candidate networks, to connect relevant tuples by joining different

relational tables. The result for a given query comes down to a sequence of candidate networks, each made of a set of

tuples containing the query keywords in their text attributes, and connected through their primary-foreign key

references, ranked based on candidate network size and coverage. Recent methods on RDB full-text search in [14, 60]

focus on more meaningful scoring functions and generation of top-k candidate networks of tuples, allowing to group

and/or expand candidate networks based on certain weighting functions in order to produce more relevant results. The

authors in [63] tackle the issue of keyword search on streams of relational data, whereas the approach in [89]

introduces keyword search for RDBs with star-schemas found in OLAP applications. Other approaches introduced

natural language interfaces providing alternate access to a RDB using text-to-SQL transformations [57, 73], or

extracting structured information (e.g., identifying entities) from text (e.g., Web documents) and storing it in a DBMS

to simplify querying [25, 26]. Few recent approaches have addressed keyword-search in NoSQL DBs such as HBase

[40, 49, 86], using dedicated (row or column) table schemas coupled with (horizontal or vertical) index partitioning, to

support parallel index storage and search [40], as well as multi-term indexing and incremental query result fetching

[86]. Keyword-based search for other data models, such as XML [2, 24] and RDF [13, 15] have also been studied.

Discussion: Our work is complementary to most existing DB search algorithms in that our approach extends

syntactic keyword-term matching: where only tuples containing exact occurrences of the query keywords are

identified as results, toward semantic based keyword matching: where tuples containing terms which are lexically and

semantically related to query terms are also identified as potential results, a functionality which - to our knowledge -

remains unaddressed in most existing DB search algorithms.

2.2. Extending Syntactic Search toward Semantic Search

While DB approaches focused on integrating traditional (syntactic) keyword-based search functionality, many efforts

have been deployed by the IR community to extend syntactic processing toward semantic full-text search using

dedicated semantic indexing techniques, leading to the so-called concept-based (or knowledge-based) IR [8, 11, 55].

The latter is an alternative IR approach that aims to tackle the semantic relatedness problem by transforming both

documents and queries into semantic representations, using semantic concepts in a reference knowledge base (instead

of syntactic keywords/terms) such that the retrieval process is undertaken in the concept space [12, 42, 55]. Existing

concept-based methods, e.g., [8, 11, 12, 42, 54, 55], can be characterized by three parameters: i) Semantic indexing:

consists of the representation model the concepts are based on, as well as the underlying indexing technique used to

access the concepts. It attempts to solve the problems of lexical matching by using conceptual indices instead of

individual word indices for retrieval [54]; ii) Mapping method: the mechanism that maps the lexical terms with these

semantic concepts. The mapping can be performed using manual mapping w.r.t. a handcrafted ontology such as

WordNet [66] or Yago [45], or using machine learning [41] or graph matching techniques [12], though this would

usually imply less accurate mappings, iii) Usage in the retrieval process: the stages in which the concepts are used in

information retrieval. Concepts would be best used throughout the entire process, in both the indexing and retrieval

stages [12]. Yet, most existing solutions apply concept analysis in one stage only, performing so-called query

relaxation/refinement or query disambiguation over the bag of words retrieval model [44], to reduce processing time.

2.2.1. Query Relaxation and Refinement

Traditional query relaxation and refinement methods (cf. surveys in [19, 77]), rely on corpus-based evidence:

expanding user queries by adding words that often co-occur with the query terms in a given corpora (e.g., France and

Paris; car and driver). Query expansion terms can also be identified from user feedback (frequent terms occurring in

previous results) [20, 68, 76], as well as query logs (terms related to past queries and accessed documents) [29, 43,

51]. We distinguish between query relaxation and query refinement on the grounds that query relaxation occurs before

query execution and is considered as a query pre-processing phase [6, 17, 68], whereas query refinement occurs after

the first round of query results have been acquired by the user and is thus considered as a query post-processing phase

[20, 21, 67]. Such approaches usually require manual tuning to improve performance: too few expansion terms may

have no impact, and too many can cause a query drift [68]. In addition, corpus-based approaches require extensive

training and huge corpora, which make such methods less practical especially in the context of Web applications. This

has led to a growing interest knowledge-based solutions, e.g., [17, 58, 72], investigating the use of ontological

information (rather than corpus statistics) to assist the user in formulating and/or expanding keyword queries by: i)

allowing some user interaction to accurately identify the intended senses of query-terms, and then ii)

expanding/rewriting query keywords via their most related semantic concepts in the reference semantic source [7]

(such as WordNet [66] or Yago [45]). Note that query relaxation and query refinement techniques introduce additional

query pre-processing and post-processing overhead respectively compared with the traditional bag-of-words approach,

adding statistical and/or knowledge-based information to expand/rewrite each query before/after processing, such that

users are generally involved in the query refinement process after the system provides the first round of results.

2.2.2. Query Disambiguation

An alternative approach to handle semantic meaning is to apply automatic word sense disambiguation (WSD) to

queries, during query execution time. Disambiguation methods usually use knowledge resources such as WordNet

[59], and/or co-occurrence statistical data in a corpus [78] to find the possible senses of a word and map word

occurrences to the correct sense (cf. WSD surveys in [69, 81]). Semantic query analysis in IR usually involves two

steps: i) WSD to identify the user’s intended meaning for query terms, and ii) semantic query

representation/enhancement in order to alter the query so that it achieves better (precision and recall) results [7, 58].

The disambiguated query terms are then used in query processing, so that only documents that match the correct sense

are retrieved [59]. Yet, the performance of WSD-based approaches depends on the performance of the automated

WSD process [37] which generally: i) is computationally complex requiring substantial execution time [69], ii)

depends on the context of the query/data processed (e.g., surrounding terms) [22, 90] which is not always sufficiently

available (e.g., keyword queries on the Web are typically 2-to-3 words long [53, 86]), and thus iii) do not guarantee

correct results [37, 52] as incorrect disambiguation is likely to harm performance [37].

Discussion: Most existing methods focus on query pre-processing using query relaxation [17, 64, 68], query

disambiguation [7, 58, 59], or query post-processing using query refinement (exploiting user feedback after the system

provides the first round of results) [20, 21, 67]. In contrast, our study encloses the semantic knowledge directly into an

inverted index so that semantic-aware processing can be done at the most basic indexing level, where more

opportunities can be explored toward semantic-aware filtering. This allows users to be involved in the whole process:

during data indexing, initial query writing, processing, and then performing query refinement and rewriting.

2.3. Inverted Indexes handling Data Semantics

Various efforts have been recently deployed to extend the inverted index toward handling data semantics. These can

be organized in three main categories: i) including semantic knowledge into an inverted index, ii) including full-text

information into the semantic knowledge base, and iii) building an integrated hybrid structure.

The first approach consists in adding additional entries in the index structure to designate semantic information.

Here, the authors in [54] suggest extending the traditional (term, docIDs[]) inverted index toward a (term, context,

docIDs[]) structure where contexts designates senses (synsets) extracted from WordNet, associated to each term in the

index taking into account the statistical occurrences of concepts in Web document [11]. The authors however do not

provide the details on how concepts are selected from WordNet and how they are associated to each term in the index.

Another approach is introduced in [92], extending the inverted index structure by adding extra pointers linking each

entry of the index to semantically related terms, (term, docIDs[], relatedTerms[]). Term links are identified by

analyzing term occurrences in Web documents, based on Web document Page-Rank linkage analysis. Yet, the authors

do not describe how they consider semantic relatedness between terms (what kinds of semantic relations and

processing are used), nor how the index is actually built based on linked Web documents. A second approach to

semantic indexing is to add words as entities in the ontology [11, 85]. For instance, adding triples of the form word

occurs-in-context concept, such that each word can be related to a certain ontological concept, when used in a certain

context. Following such an approach: i) the number of triples would naturally explode, given that ii) query processing

would require reaching over the entire left and right hand sides of this occurs-in-context index, which would be more

time consuming [11] than reading an indexed entry such as with the inverted index. A possible optimization would be

to split the relation into word occurs-in context and concept occurs-in context, yet the relations would remain huge

and concept occurs-in-context always has to be processed entirely [11]. A related approach has been used to

disambiguate WordNet glosses [70, 85], and has been proven useful in enhancing WSD-based query expansion. A

third approach to semantic indexing consists in building an integrated hybrid structure: combining the powerful

functionalities of inverted indexing with semantic processing capabilities. To our knowledge, one existing method in

[11] has investigated this approach, introducing a joint index over ontologies and text. The authors consider two input

lists: containing text postings (for words or occurrences), and lists containing data from ontological relations (for

concept relations). They produce a 4-tuples index structure (prefix, terms[]) (term, context, concepts[]) where a

prefix contains one index item per occurrence of a term starting with that prefix, adding an entry item for each

occurrence of an ontological concept in the same context as one of these words. The authors tailor their method

toward incremental query construction, performing context-sensitive prefix suggestions of terms in building queries.

Discussion: The method in [11] seems arguably the most related to our study, with major differences in

objectives and theoretical/technical contributions: the authors in [11] target semantic full-text search with special

emphasis on incremental query construction and suggestion based on query term prefixes and result excerpts, whereas

we target semantic search in textual DBs extending DB-style (SQL and NoSQL based) querying capability toward

semantic full-text search. Hence, while the authors in [11] focus on the IR aspects of indexing, keyword query

construction, and query evaluation, we rather present a full-fledged textual DB solution, with structures and

algorithms designed for seamless storage and manipulation within a typical DB system, allowing to process

unstructured (IR-style), structured (SQL-style), and partly structured (NoSQL) data.

3. Input Resources

As indicated previously, our work consists in combining two resources, a textual data collection and a semantic

knowledge base, in order to build SemIndex+. We first describe the textual resource in Section 3.1, and then describe

the semantic resource in Section 3.2.

3.1. Textual Data Collection

In our study, a textual data collection can be a set of: i) documents or unstructured text fields in a textual DB, ii)

structured tuples in a relational DB, or iii) partly structured data items in a NoSQL DB, as shown in Tables 1 to 3

respectively. Here, we provide a unified formal definition:

Definition 1 - Textual Data Collection: A textual data collection Δ (i.e., textual collection for short) is defined

as a collection of data objects where every object Oi Δ has a unique identifier id(Oi) and is made of a set of

attribute-value pairs Oi{Am:am,…, Aj:aj,…, An:an}. Each attribute Aj has domain dom(Aj) designating the set of values

(strings, numbers, etc.) allowed in Aj, where aj dom(Aj). Each data value aj from Oi associated to attribute Aj is

denoted as Oi.aj. We designate by Δ.A = {A1, Am,…, An,…, Ap} the set of all attributes associated to all objects in Δ

Definition 1 - can be used to describe: structured, unstructured, and partly structured (NoSQL) data. It can

describe a structured (relational) data collection, such as Struct in Table 1, which consists of 3 data objects with textual

contents organized following a set of 6 attributes: Struct.A = {ID, title, year, plot, genre, info}. Similarly, an

unstructured (free text) data collection, such as Free in Table 2, would be represented as a set of data objects having

each an object ID coupled with its textual description, e.g., Free.A ={ID, description}. Definition 1 - also allows to

represent partly structured data collections, such as Part in Table 3, where every data object in the data collection is

made of the object ID combined with a different subset of attributes defined in the data collection, e.g., a subset of

Part.A={ID, title, year, plot, genre, info, description}. Here, we adhere to the most basic form of partly structured data

collections known as NoSQL attribute-value or key-value stores [33], where every data object (identified by its key) is

made of a set of attribute-value items (e.g., title-“When a Stranger Calls” is the first item in data object O1 of NoSQL).

More sophisticated NoSQL models such as document DBs [13] or graph stores [74], where attribute-value items can

be linked/nested with hierarchical or cross relations, are disregarded here and will be covered in a dedicated study.

Given a textual data collection Δ, an inverted index (also referred to as a posting file, or inverted list) built upon

Δ, is (in its most basic form) a sorted list of index terms associated each with a set of object identifiers from Δ [61],

disregarding attribute information as shown in Fig. 2.a. In this study, we extend the basic inverted index to handle

multi-attribute data objects, introducing an object-attribute (OA) index:

Definition 2 - Object-Attribute (OA) Inverted Index: Given a textual data collection Δ, an OA inverted index

built on Δ, denoted as InvIndexOA(Δ), is a structure of the form (dom(A), OAs, f) where:

 dom(A) designates the set of values within the domains of all attributes Aj Δ.A. Considering text-only

domains, values come down to textual tokens, i.e., terms (words/expressions),

 OAs designates the set of object (identifier)-attribute doublets, i.e., OAs = {(id(Oi), Aj)} Oi Δ and Aj

 Δ.A / Oi .aj , where Aj is an attribute for which object Oi has a non-null value,

 f is a function mapping each term dom(A) with a list of object-attribute doublets OAs[] designating the

term’s occurrence locations in Δ, i.e., OAs[] = (id(Oi), Aj) 1 / term Oi .aj

A term used as textual token in the inverted index is referred to as index term, whereas the list of object-attribute

doublets, i.e., OAs[], mapping to each index term is referred to as the term’s posting list (cf. example in Fig. 2.b)

Fig. 2 shows extracts of a basic inverted index (without attribute information, which was adopted in the initial

SemIndex study [23]) as well as the corresponding OA multi-attribute inverted index, built on the sample movie data

collection ΔPart in Table 3, where data objects O1, O2, and O3 have been indexed using index terms extracted from the

data collection, and sorted in alphabetic order. Another form of a multi-attribute inverted index can also be defined as

a term-attribute (TA) index, where term-attribute doublets are mapped with object identifies (as shown in Fig. 2.c).

Both (logically equivalent yet technically different) variants can be straightforwardly integrated in SemIndex+. Note

1 We use symbols and to designate an ordered list of elements, and symbols { and } to designate an unordered set.

that we will use ΔPart as the running example data collection in the remainder of the paper since it integrates and

generalizes all interesting properties from its ΔStruct and ΔFree counterparts.

SemIndex+ allows both attribute-sensitive and attribute-free indexing and querying (as opposed to only attribute-

free processing in [23]). We can choose to disregard attributes: i) at the index level (using the traditional InvIndex,

adopted in [23]), or ii) at the querying level, following the user query at hand (since InvIndexOA and InvIndexTA can be

straightforwardly processed as traditional attribute-free indexes by simply disregarding attribute information and

merging corresponding posting list entries). For instance, running query q4 = σ (“light”, “horror”)ΔPart on either

InvIndexOA (ΔPart) or InvIndexTA (ΔPart), where designates the combined textual content from all attributes, would

return as answer O1, since O1’s textual content in ΔPart contains both terms “light” and “horror” (despite the fact that

the two terms occur in two separate attributes: plot and genre respectively).

Term Object IDs[]

“Car” O1, O2

“Horror” O1

“Light” O1

“Sound” O3

“Zen” O1

… …

a. Simple (attribute free) inverted

index InvIndex(ΔPart), adopted in

our original study in [23]

Term (Object id, Att.)[]

“Car” (O1, plot), (O2, description

“Horror” (O1, genre),

“Light” (O1, plot)

“Sound” (O1, plot), (O3, title), (O3, plot)

“Zen” (O1, plot)

… …

b. Object-Attribute inverted index

InvIndexOA(ΔPart)

(Term, Attribute) Object IDs[]

(“Car, plot) O1

(“Car, description) O2

(“Horror, genre) O1

(“Light”, plot) O1

(“Sound”, title) O3

(“Sound”, plot) O1, O3

(“Zen”, plot) O1

… …

c. Term-Attribute inverted index

InvIndexTA(ΔPart)

Fig. 2. Sample inverted indexes based on text collection ΔPart in Table 3.

3.2. Semantic Knowledge Base

In the Natural Language Processing (NLP) and Information Retrieval (IR) fields, semantic knowledge bases (i.e.,

thesauri, taxonomies, and/or Ontologies such as WordNet [66], Roget’s thesaurus [90], and Yago [45]) provide a

framework for organizing words/expressions into a semantic space [16]. A knowledge base1 is usually modeled as a

semantic network made of a set of entities representing semantic concepts (or groups of words/expressions), and a set

of links between the entities, representing semantic relationships (synonymy, hyponymy, etc.). In this study, we adopt a

graph-based structure to model semantic knowledge bases. In such a structure, entities are represented as vertices, and

the semantic relationships between entities are represented as directed edges. Formally:

Definition 3 - Semantic knowledge base: A semantic knowledge base KB (i.e., knowledge base for short) is

represented as a semantic network graph, also known as knowledge graph, GKB(V, E, L, fV, fE) where:

 V is a set of vertices (nodes), designating entities in the knowledge base. To illustrate this with WordNet for

example, V includes both: i) sense nodes, representing semantic senses (synsets) with glosses, and ii) term

nodes, representing literal words/expressions.

 E is a set of directed edges, an edge consisting of an ordered pair of vertices in V.

 L is a set of edge labels denoting semantic/lexical relationships. For WordNet, L includes:

o Semantic relationships between concepts, e.g., hyponymy, hypernymy, meronymy, etc.

o Semantic relationships between concepts and terms, namely has-sense and has-term (e.g., in Fig. 3, word

“Zen” has-sense S1, and S1 has-term “Zen”)

o Lexical relationships between terms, namely derivation (e.g., term “Zen” derives term “Buddhist Zen”, and

“Buddhist Zen” is-derived-from “Zen”)

 fV is a function defined on V, designating the string value of each node in V. For WordNet, string values

include: i) glosses/definitions, when dealing with sense nodes, and ii) and literal words/expressions,

 fE is a function defined on E, assigning a label from L to each edge in E. Multiple edges may exist between the

same pair of vertices when dealing with term nodes, which makes GKB a multi-graph

An extract from the WordNet lexical ontology is shown in Fig. 3, where S1, S2 and S3 represent senses (i.e.,

synsets), and their string values (i.e., the synsets’ glosses/definitions), and T1, T2, …, T11 represent terms, and their

string values (i.e., literal words/expressions) shown along aside the nodes. Given that most semantic/lexical

relationships are symmetrical (hyponymy/hypernymy, meronymy/holonymy, has-sense/has-term, etc.), and given that a

relationship cannot exist without its symmetrical counterpart, we simplify our graph model by representing each

couple of symmetrical relationships between senses and/or terms with one edge having opposite directions (instead of

two edges), labeled with the names of the symmetrical relationships.

1
 In the remainder of the paper, we will use WordNet [66] as the illustrative semantic knowledge base (cf. Fig. 3).

A simple inverted index InvIndex(GKB) can be subsequently built for the textual tokens of each GKB entity (i.e.,

string values of term nodes and sense nodes, cf. Fig. 3.b) to speed up term/sense lookup when creating and then

querying the integrated SemIndex+ structure.

a. Sample GKB graph representing a KB extract from WordNet.

Term Sense IDs[]

“acid” S1, S3

“clean” S2

“light” S2

“lsd” S3

“lysergic” S1, S3

“window pane” S1

… …

b. Extract of inverted index InvIndex(GKB)

connecting terms in GKB with corresponding

senses (to speed up term/synset lookup)

Fig. 3. Extract from the knowledge graph of WordNet, with the corresponding inverted index.

4. SemIndex+ Design

In this section, we present the logical design techniques of SemIndex+, highlighting extensions to our initial model

from [23] necessary to handle structured and partly structured data. In the following, we first present SemIndex+’s

graph model, and then describe its construction process.

4.1. SemIndex+ Graph Model

We define SemIndex+ as an extension of the SemIndex knowledge graph developed in [23], where additions to the

initial model necessary to handle multi-attribute indexes are highlighted in bold:

Definition 4 - SemIndex+ graph: Given an input textual collection Δ and an input knowledge base KB, we

define SemIndex+(Δ, KB) as an extended knowledge graph SIG (Vi, Vd, Va, L, Ei, Ed, fV, fE, fW) where:

 Vi is a set of index nodes, denoting i) entities (senses and terms) from KB, and ii) index terms from Δ:

o iV Vi the subset of term nodes designating searchable terms1 in SIG , i.e., nodes referring to terms

from KB and index terms from Δ (represented visually as circle nodes)

o #
iV Vi the subset of sense nodes in SIG referring to senses from KB (represented as double circles ◎)

Naturally, Vi = iV #
iV

 Vd is a set of data nodes, denoting data objects from Δ (represented visually as square shaped nodes 2)

 Va is a set of attribute nodes, denoting attributes from Δ (represented as polygon shaped nodes)

 Ei is the set of edges between index nodes, called index edges, defined as ordered pairs of index nodes in Vi

(represented visually as straight arrows)

 Ed is the set of 3-uniform hyper-edges linking index nodes with data nodes through attribute nodes,

called data edges (represented visually as dashed arrows)

 L is a set of edge labels including:

o Index edge (Ei) labels which represent semantic/lexical relationships between index nodes (e.g.,

hyponymy, meronymy, has-sense, etc.)

o A single data edge (Ed) label: contained, designating the containment relationship between term nodes in

iV and data nodes in Vd

 fV is a function defined on Vi

Vd

Va, representing the string value of each node in Vi

Vd

Va

 fE is a function defined on Ei Ed, assigning a label from L to each edge in Ei Ed

 fW is a weighting scheme defined on the nodes in Vi

Vd

Va and the edges in Ei Ed. The weights

will be used in selecting and ranking semantic-aware query results (cf. Section 4.5)

1 Searchable terms will be mapped against query terms when performing query processing (cf. Section 5).
2 Data nodes will designate (potential) query search results (Section 5.2).

Building the SemIndex+ graph comes down to: i) generating two separate graph representations for each of the

input resources: the textual collection (noted G) and the knowledge base (noted KBG), following our SemIndex+

graph model, and then ii) tightly coupling the resulting graphs into a single SemIndex+ graph structure (noted SIG),

which we describe in the following subsections. A sample SemIndex+ graph is shown in Fig. 7 (Section 4.4), built

based on textual collection ΔPart from Table 3 (where corresponding G in provided in Fig. 5.a) and the KB extract in

Fig (where corresponding KBG is reported in Fig. 5.b). It comprises 3 data nodes (O1 – O3), 4 attribute nodes (A1 – A4),

3 index sense nodes (S1 – S3), and 12 index term nodes (T1 – T12) along with corresponding data and index edges.

4.2. Indexing the Textual Collection

Given an input textual collection Δ, we use a conversion function following Definition 4 -to produce a SemIndex+

graph representation of Δ denoted as G = SemIndex+(Δ,)1. It comes down to first generating Δ’s inverted index:

either using InvIndexOA(Δ) (cf. Fig. 2.b) or InvIndexTA(Δ) (cf. Fig. 2.c), which will be represented as the same

SemIndex+ graph G (cf. Fig. 5.a). G consists of: i) a set of index nodes Vi representing index terms in Δ (searchable

term nodes), i.e., Vi = iV (since Δ does not contain senses, i.e., #
iV =), ii) a set of data nodes Vd representing data

objects in Δ, iii) a set of attribute nodes Va representing attributes from Δ.A, and iv) a set of edge labels L including

one single label: contained, underlining containment relationships represented as 3-uniform hyper-edges linking index

nodes in Vi with data nodes in Vd through attribute nodes Va.

Definition 5 - 3-Uniform Data Edge in SemIndex+: Given a SemIndex+ graph SIG , we define d
a
i

e
 .SI dG E

as

an ordered 3-uniform hyper-edge connecting data node nd .SI dG V with searchable term node ni .SI iG V

through

attribute node na .SI aG V (cf. Fig. 4)

A 3-uniform hyper-edge is a generalized definition of an edge connecting 3 nodes, forming a so-called hyper-

graph2 [36]. We adopt the 3-uniform hyper-edge relationship model to handle attribute nodes in our index, compared

with the (attribute-free) 2-uniform data edge relationship model used in the original SemIndex [23] (cf. Fig. 4).

a. 2-uniform edge

following [23]

b. 3-uniform

hyper-edge

c. Multiple 3-uniform hyper-edges d. Simplified representation of hyper-edges,

adopted in remaining examples

Fig. 4. Sample 3-uniform data edges following SemIndex+ extended model.

A sample G 3-uniform hyper-graph representing our running example inverted indexes (cf. Fig. 2.b and c), based

on textual collection ΔPart in Table 3, is shown in Fig. 5.a.

4.3. Indexing the Knowledge Base

Similarly, given a semantic knowledge base KB, represented as a knowledge graph GKB, we use a conversion function

following Definition 4 - to produce a SemIndex+ graph representation of KB denoted as KBG = SemIndex+(, KB)1.

1 Creating the textual collection index graph does not involve an input knowledge base, thus KB = (following Definition 5).
2 A hyper-graph is a generalization of a graph G(V, E) where V is a set of nodes and E is set of edges underlining non-empty subsets of nodes from

V. A hyper-graph is said to be r-uniform if all edges have cardinality r, i.e., if each edge connects r nodes together (e.g., a traditional graph comes
down to a 2-uniform hyper-graph). An r-uniform hyper-graph is ordered if the occurrence of nodes in every edge is ordered from 1 to r [36].

Data node Index node Contained relationship Attribute node

GKB’s inverted index InvIndex(GKB) is generated and then represented as a SemIndex+ graph KBG which inherits the

properties of GKB, such that: i) the set of index nodes Vi represents all nodes in GKB, including term nodes (iV) and

sense nodes (#
iV), ii) the sets of data nodes Vd and attribute nodes Na are empty (since KB does not contain data

objects), and iii) the set of edge labels L includes all index edge labels designating semantic/lexical relationships in

GKB (e.g., hyponymy, meronymy, has-sense, derivation, etc.). A sample KBG graph representing our running example

knowledge base is shown in Fig. 5.b.

a. Textual collection

SemIndex+ graph: G

b. Knowledge base

SemIndex+ graph: KBG

Fig. 5. SemIndex+ graph representations of input resources.2

4.4. Coupling Resources to Build SemIndex+

Producing the combined SemIndex+ graph structure SIG comes down to coupling both G and KBG , noted as: SIG = G

KBG , where: i) the set of index nodes SIG .Vi = G .Vi KBG .Vi, including corresponding index edges from KBG such

that SIG .Ei KBG .Ei
3, ii) the set of data nodes SIG .Vd = G .Vd and the set of attribute nodes SIG .Va = G .Va, including

corresponding data edges from G such that SIG .Ed = G .Ed, and iii) the set of edge labels SIG .L = G .L KBG .L,

including all index node semantic/lexical relationships as well as the contained data edge label. The pseudo-code of

algorithm SI_Construct to build SIG consists of 6 main steps as shown in Fig. 6. Each step is described as follows:

 Step 1: Given an input textual collection Δ, build the corresponding inverted index, i.e., using either

InvIndexOA(Δ) or InvIndexTA(Δ), and generate the corresponding G graph as previously defined.

 Step 2: Receiving a semantic knowledge graph GKB representing the semantic knowledge base KB provided as

input, build an inverted index InvIndex(GKB) for the string values of each KB entity (i.e., sense nodes and term

nodes, to access them more efficiently during resource coupling, and later during query execution), and then

construct KBG graph as illustrated previously.

1 Creating the knowledge base index graph does not involve an input textual collection, thus Δ = (following Definition 5).
2 The missing term problem is discussed in Section 4.4.
3 The set of index edges in

SIG is not exactly equivalent to that in
KBG since it might contain additional index edges connected with index

terms in G
 which do not map to any term node in

KBG . This is discussed as the missing terms problem in Step 4 of algorithm SI_

Construction (cf. Fig. 6).

Data node Term node Attribute node Contained relationship Sense node Lexical/semantic relationship

Missing

Term2

 Step 3: Combine the two SemIndex+ graphs into a single graph structure SIG . To do so, we map and then merge

all searchable term nodes in G , i.e., G . iV , with searchable term nodes in KBG , i.e., KBG . iV , as follows:

1. For each pair of searchable term nodes in G . iV
 and KBG . iV , if their string values are equal, then

remove one of them and merge all the connected edges.

2. Sense nodes in KBG are kept the same in SIG , i.e., SIG . #
iV = KBG . #

iV , but are connected with the

corresponding searchable term nodes SIG . iV

3. Data nodes and attribute nodes in G are kept the same in SIG , i.e., SIG .Vd = G .Vd, and SIG .Va = G .Va,

but are connected with the corresponding searchable term nodes SIG . iV
 using the contained data edge

relationship.

Fig. 7.a shows the result of combining the two sample SemIndex+ graphs used in our running example: G of

the extract of textual collection ΔPart and KBG of the extract knowledge base KB.

Algorithm SI_Construct // SemIndex+ construction

Input: Δ // Textual data collection

 KB // Semantic knowledge base
 W // Weighting function parameters

Ouput: SIG // SemIndex+ graph

Begin

Step 1: Build InvIndex(Δ) to construct G

Step 2: Build InvIndex(GKB) to construct KBG

Step 3: Coupling G and KBG into SIG by:

3 1. Mapping & Merging searchable term nodes in . iG V
 and .KB iG V

4 2. Including sense nodes from #.KB iG V

5 3. Including data nodes from G .Vd
Step 4: Run MissingTerms_Linkage algorithm

 // Connect Missing terms in SIG

Step 5: Assign weights to edges & data nodes in SIG
 - According to parameters W and weighting function fW

Step 7: Remove from SIG :

 1. Labels from all edges: SIG .E

 2. String values from all nodes except searchable terms: .SI iG V

Return SIG
3

End

1

2

3

4

5

6

7

8

9

10

11

12

 13

Fig. 6. Pseudo-code of SemIndex+ construction algorithm.

 Step 4: Searchable terms from G . iV
 which do not map to any searchable term in KBG . iV

 can exist, which

we identify as missing terms (e.g., term “Horror” in Fig. 5). These come down to terms from the data

collection with no semantic cues in the knowledge base (e.g., “horror” appears in object O1 of ΔPart but does

not appear in the extract knowledge base KB in Fig. 3). To solve this, we introduce algorithm

MissingTerms_Linkage (cf. Appendix II) inspired from distributional thesaurus construction methods, e.g. [18,

87], which creates links from each missing term to one or more closely related terms, i.e., terms that co-occur

together in the text collection (e.g., term “horror” links with “car”, considered as its most related – highest co-

occurrence frequency term – in ΔPart, cf. Fig. 7). The new co-occurrence links (index edges) are labeled occurs-

with. Our MissingTerms_Linkage algorithm is provided in Appendix II since it’s outside of the main scope of

this paper and will be evaluated in a dedicated future study.

 Step 5: Assign weights to edges and textual objects, according to fW. The weights will be used to select and

rank query results. Different weighting functions can be used, which we describe in Section 4.5.

 Step 6: It removes edge labels and string values of all nodes in SIG except for iV (searchable term nodes) and

Va (attribute nodes), since all other nodes are not required for processing semantic queries. Removing node

string values helps improve SemIndex+’s scalability in terms of size, construction time, and query processing

time (cf. experiments in Section 7).

a. SemIndex+ graph before removing edge labels and string values.

b. Final SemIndex+ graph representation.

Fig. 7. SemIndex+ graph SIG obtained after coupling the data collection and the knowledge base graphs in Fig. 5.

Fig. 7.b illustrates our running example SIG excluding edge and node labels except for searchable term nodes and

attribute nodes which are required in the querying process. Edge and node weights are omitted from the figure for

clearness of presentation.

4.5. SemIndex+ Weighting Functions

After indexing and coupling the textual resource and the semantic resource into a unified SemIndex+ graph (i.e., Step

3 of algorithm SI_Construct), and handling the missing terms problem (Step 4), we introduce a set of weighting

functions (Step 5) to assign weight scores to SemIndex+’s entries, including: data nodes, index nodes, attribute nodes,

as well as data edges and index edges. The weighting functions will be used to effectively select and rank

semantically relevant results w.r.t. the user’s query (cf. SemIndex+ query processing in Section 5). Other weight

functions could be later added to cater to the index designer’s needs.

4.5.1. Index Node Weight

Considering an index node ni .SI iG V , the weight of ni denoted as WIndexNote(ni), is computed according to the below

formula where we consider “Fan-in” to be the number of nodes connected with the target index node:

WIndexNode(ni) =

 .

()
 [0,1]

(())
SIj i

i

j
v G V

Fan in n

Max Fan in n

(1)

The rational here is that an index node is more important if it receives more links from other indexing nodes.

4.5.2. Index Edge Weight

Given an index edge
j

i
e .SI iG E outgoing from index node ni and incoming toward index node nj in the SemIndex+

graph, we define the weight of
j

i
e as:

WIndexEdge (
j

i
e)= 1]0,1]

()Label iFan out n

 (2)

The weight of an index edge increases with the number of outgoing links from a certain index node to another, taking

into account the semantic relation type of the index link at hand.

4.5.3. Data Node Weight

The weight of a data node nd .SI dG V in the SemIndex+ graph is defined as:

WDataNode (nd) =

 .

()
 [0,1]

Max (())
SIq d

d

q
n G V

Fan - In n

Fan - In n

(3)

where Fan-In(nd) designates the number of foreign key/primary key data links (joins) outgoing from data nodes

(tuple) where the foreign keys reside, toward data node (tuple) nd where the primary key resides. Similarly to index

node weight, the rational is that a data node is more important when it receives more links from other data nodes.

4.5.4. Attribute Node Weight

The weight of an attribute node na .SI aG V in SemIndex+ is manually (or semi-automatically1) acquired from the data

creator/user, since it is a data design issue, such that:

WAttNode(na) [0, 1] where for each nd .SI dG V ,

1()
d

a a
i

AttNode

n e

anW

 (4)

In other words, the sum of the weights of all attribute nodes (excluding the identifier attribute) connected with a

given data node nd through any index term node ni .SI iG V needs to be normalized in order to sum up the full

(100%) descriptive power of nd. For instance, considering our running example SemIndex+ graph from Fig. 7, we (as

users) consider WAttNode(title) = 0.4, WAttNode(genre) = 0.3, WAttNode(description) = 0.3, WAttNode(year) = WAttNode(plot) =

WAttNode(info) = 0.1. Hence:

 For data object O1, attribute weights are already normalized such that: WAttNote(title) + … + WAttNode(info) = 1

 For O2, WAttNode(description) needs to be normalized to become = 1, since description is the only attribute

describing O2 (and thus should sum the full descriptive power of the data node).

 Similarly for O3, attribute weights need to be normalized to obtain WAttNote(title) + WAttNote(plot) +

WAttNote(genre) = 1. By applying linear normalization to the above user chosen weights for instance, we obtain

WAttNode(title) = 0.5, WAttNote(genre) = 0.375, and WAttNote(plot) = 0.125 .

4.5.5. Data Edge Weight

Given a data edge d
a
i

e

 .SI dG E
connecting an index node ni with a data node nd through an attribute node na (e.g.,

data edge connecting index node T1 with data node O2 through attribute A4 since the term “car” occurs in the textual

description of O2 through its desc attribute, likewise for T1-A4-O2, T4-A2-O1,…, T12-A3-O1, in Fig. 7), we compute the

weight of d
a
i

e

as an adapted TF-IDF (Term Frequency Inverse Document Frequency) score where TF underlines the

frequency (number of occurrences) of the index node string literal within a given data node, connected via the data

edge in question, and IDF underlines the number of data edges connecting the same index node with other data nodes

(i.e., the fan-out of the index node in question). Hence, given a data edge d
a
i

e

incoming from index node ni toward

data node nd through attribute node na, where ni.l denotes the string value of ni, we define: [46]

WDataEdge (d
a
i

e) = TF(ni.l, nd, na) IDF(ni.l, .SI dG V)
 (5)

where TF and IDF are calculated as follows:

 .

() ()
TF . , , [0, 1]

(())
d

SI da
j

i AttNode a
i d a

j

e G E

NbOcc n .l W n
n l n n

Max NbOcc n .l

 (6)

where the number of occurrences of a term ni.l, denoted as NbOcc(nj.l), is weighted by the corresponding attribute

(such that terms occurring through higher weight/more relevant attributes will have a higher impact on the data edge

1 Learning algorithms can be devised to evaluate the relevance of attributes based on existing data collections [46]. Yet, such approaches
also require manual expert input to train the learning algorithms.

weight), and where TF is normalized w.r.t. the maximum number of occurrences of any index node string literal nj.l

within the target data node nd.

IDF(ni.l, .SI dG V) = (. , .)
1 [0, 1[

SIi dDF n l G V

N
 (7)

where N is the total number of data nodes in the SemIndex+ graph, and DF(ni.l, .SI dG V) is the number of data nodes

in the graph containing at least one occurrence of ni.l.

5. SemIndex+ Query Processing

Given the above weighting functions (others could be added later), we define our query model and present our

algorithm to perform semantic-aware search with SemIndex+.

5.1. Query Model

The semantic-aware queries considered in our approach are conjunctive projection selection queries of the form q =

πX σP (Δ), defined over a data collection Δ (structured, unstructured, or partly structured, cf. Definition 1), where X is

a subset of attributes X A (where designates the combined textual content from all attributes, allowing both

attribute-sensitive and attribute-free querying), represents a link distance threshold designating different levels

of semantic awareness in query execution, and P is a conjunctive selection predicate defined as follows:

Definition 6 - Conjunctive Selection Predicate: It is defined as an expression P on a string-based attribute1 or

on the combined textual content of all attributes Ai A 2, of the form: (Ai θ s), where s is a user-given string value

(e.g., a selection term/keyword), and θ {=, like} whose evaluation against values in dom(Ai) is previously defined

Following the value of link distance , we consider four semantic-aware query types:

i. Standard Query: When = 1, the query is a standard containment query, involving only data edges

(connecting data nodes with searchable term nodes through attribute nodes, using the contained relationship),

such that no semantic information is involved.

ii. Lexical Query: When = 2, the link distance is increased by 1 to include (in addition to data edges), first level

index edges. They designate lexical relationships between searchable term nodes (namely the derivation

relationship, where one term derives another term), such that basic lexical information is involved.

iii. Synonym-based Query: When = 3, the senses (synsets) are also involved. Here, link distance includes the

second level index edges: connecting searchable term nodes with corresponding sense nodes (via the has-sense

and has-term semantic relationships), such that synonymous terms corresponding to the sense nodes are

involved. Note that there is no direct edge between data nodes and sense nodes.

iv. Extended Semantic Query: When 4, the data graph of SemIndex+ can be explored in all possible ways,

covering index edges designating all kinds of semantic relationships (hyponymy, meronymy, etc.) between index

nodes, to reach even more semantically relevant results.

While we currently focus on relaxing “strict” conjunctive querying by increasing link distances between query

and data nodes, yet our query model and approach can also incorporate different kinds of “weak AND” operators such

as fuzzy predicates [50, 91] (which we will investigate in an upcoming study).

5.2. Query Answer

The answer to a query q= πX σP (Δ) in SemIndex+(Δ, KB), noted q(Δ), is defined as follows:

Definition 7 - Query answer: Given SemIndex+(Δ, KB) and its graph representation SIG , a query answer q(Δ) is

the set of distinct root nodes of all answer trees in SIG , where every root node represents a data object in Δ. We define

an answer tree as a connected sub-graph T SIG satisfying the following conditions:

 Root node: T’s root is a data node, i.e., R(T) SIG .Nd, and it is the only data node in T, designating the

corresponding textual object in Δ to be returned to the user,

1 Although our approach is generic and can be defined on other types of attributes.
2 designates the combined textual content from all attributes

 Leaf nodes: All leaf nodes in the answer tree T are searchable term nodes mapping to query terms (keywords),

 Tree structure: For each node n T, there exists exactly one directed path from n to T’s root node R(T),

 Depth boundary: The depth of T, i.e., the maximal number of edges between the root and a leaf node, is not

greater than the link distance threshold ,

 Minimal tree: No node can be removed from T without violating some of the above conditions.

The answer tree comes down to a conjunction of paths starting at leaf nodes designating each a query term, and

ending at a common root designating the textual data object to be returned as result

a. Answer tree for a standard query (= 1). b. Answer tree for a lexical query (= 2).

c. Answer tree for a synonym-based query (= 3). d. Answer tree for an extended semantic query (=4).

Fig. 8. Sample answer query trees1 with different link distance threshold values , extracted from our running

example SemIndex+ graph (Fig. 7).

According to the value of the link distance which serves as an interval radius in the SemIndex+ graph, various

answer trees can be generated for a number of query types:

i. Standard Query: When = 1, the root of the answer tree is linked directly to all leaves, representing the fact

that the result data object contains all query terms directly. A sample answer tree is shown in Fig. 8.a for query q

= σplot (“car”, “light”)
=1(ΔPart) considering our running example data collection ΔPart (Table 3) and the

corresponding SemIndex+(ΔPart, KB) (Fig. 7),

1 While all edge and node labels are removed from the SemIndex graph except for searchable term nodes, we show synset node glosses
here for the sake of presentation.

Data node Term node Attribute node Contained relationship Sense node Lexical/semantic relationship

ii. Lexical Query: When = 2, the answer tree includes lexical connections between query term nodes and other

index term nodes. Fig. 8.b is an example answer tree for query q = σplot (“race car”,“light”)=2 (ΔPart),

iii. Synonym-based Query: When = 3, the answer tree includes sense nodes, in addition to the two previous

cases. Note that due to the minimal tree restriction (Definition 7 -), a sense node cannot be a leaf node of an

answer tree. Thus, if an answer tree contains a sense node, the height of the tree is not less than 3. A sample

answer tree is shown in Fig. 8.c for query q = σplot (“pane”,“clean”)=3 (ΔPart). The synonyms of the two query

terms, “zen” and “light” are also contained in the answer tree rooted at the data node of object O1,

iv. Extended Semantic Query: When = 4, the answer tree contains additional index nodes connected via index

edges designating different semantic relationships, according to the provided input selection terms. An example

answer tree is shown in Fig. 8.d for query q= σplot (“lsd”,“clean”)=4(ΔPart).

Note that it is possible to have more than one path from a query term node to a data node in the SemIndex+ graph

(through different semantic links), which will naturally result in more than one possible answer tree.

5.3. Relevance Ranking

While a huge number of query answers could be identified for a given query, the objective of any typical IR system

would be to identify the most relevant of these candidate results and rank them based on their respective relevance

w.r.t. the query [9]. In SemIndex+, we evaluate the relevance of data nodes returned as candidate query answers (i.e.,

answer tree root nodes) using typical Dijskstra-style shortest distance computations (described in the following

section). Yet, instead of identifying the shortest distance between searchable term nodes and data nodes in the

SemIndex+ graph, we compute their maximum similarity (as the inverse of distance). Formally:

Definition 8 - Relevance Score measure: Given a SemIndex+ graph SIG , a data node nd .SI dG V and a

searchable term node ni .SI iG V (cf. visual representation in Fig. 9), we define the relevance (similarity) score of nd

w.r.t. ni, noted score(nd, ni), as the sum of the inverse of the lexical/semantic distances (in number of edges) between

nd and every index node on the path leading from nd to ni, noted path(nd, ni) = nd, np, nq, …,nj, ni, where every node

and edge on path(nd, ni) is weighted following SemIndex+’s weighting functions:

1() () ()
(,)

1 () () ...
(,)

 ()

(,)

d

a
p

p

DataNode d AttNode a DataEdge
d p

IndexNode p IndexEdge q
d q

IndexNode j

d i

W n W n w e
d n n

W n W e
d n n

W n

score n n

1()
(,)

[0,1]
(,)

j

iIndexEdge
d i

d i

W e
d n n

d n n

(8)

where d(nd, ni) designates the distance in number of edges between data node nd and index node ni

Fig. 9. Sample node linkage representation in the SemIndex+ graph.

Our relevance score measure in Definition 8 - produces normalized relevance scores [0, 1] where:

 A minimum relevance score =0 is reached when searchable term node ni is not connected with nd, i.e.,

there is no path path(nd, ni) leading from ni to nd in SIG .

 A maximum relevance score =1 is reached when searchable node ni is directly connected with data node

nd through data edge d

a
i

e (the searchable term occurs in the string value of the data node). For instance, this

is the case of index node np in Fig. 9, which can produce

1(,) () () () 1
(,)d p DataNode d AttNode a DataEdge

d p

d

a
p

score n n W n W n w e
d n n

 where d(nd, np) is minimum (=1) and

given that all three: data node, attribute node, and data edge weights are maximum (=1).

nd np nj ni

Data node Index nodes

na

 p

q
e

j

i
e

… np

d

a
p

e

 The relevance score increases with the semantic/lexical closeness between nd and ni in SIG , and decreases

with their distance. In other words, the farther away a searchable term node ni is from data node nd in SIG

(i.e., the higher the distance d(nd, ni)), the lesser its semantic/lexical relatedness with nd, and thus the lower

its relevance score w.r.t. nd.

 The relevance score also increases/decreases with SemIndex+ node/edge weighting functions, allowing

users to easily consider or disregard relevance weights following their needs (e.g., one user could prefer to

consider data node weights only, while disregarding others).

Consider the example in Fig. 8.c. Here, we assume that users disregard all weighting functions for simplicity:

 The relevance of data node O1 w.r.t. term node T1, where T1 is situated at link distance =1 from O1 (direct

linkage, where T1 occurs in the string value of O1): 4
1(,) 1 1 1 /1 1
11score O T (i.e., maximum score).

 The relevance of O1 w.r.t. S1, at link distance =2: 1
1 1(,) 1 1 1 1 1 / 2 0.75
1 21score O S

 The relevance of O1 w.r.t. T7, at link distance =3 7
1 1 1(,) 1 1 1 1 1 1 1 / 3 0.6112
1 2 31score O T

One can clearly realize that index nodes T1, S1, and T7 which are (semantically/lexically) decreasingly related to

(they are increasingly more distant in the SemIndex+ graph from) data node O1, produce decreasing relevance scores

(1, 0.75, and then 0.6112) respectively.

5.4. Querying Algorithm

The pseudo-code for our query processing algorithm, titled SI_PSS, is shown in Fig. 10. It takes as input a SemIndex+

graph SIG , a conjunctive projection selection query q including link distance threshold , as well as range and kNN

(k-nearest neighbor) query selection thresholds r and k, and produces as output the list of data nodes Nd_Out (i.e., the

answer trees’ root nodes) designating the data objects returned as query answers, selected and ordered following their

relevance w.r.t. the query. It is parallelized (multithreaded), processing query terms and starting index nodes using

multiple threads running in parallel. The overall process can be described as follows:

 Step 1: Every query term is assigned to a dedicated thread, and is thus processed independently from other query

terms (line 2).

 Step 2: The algorithm then identifies in SIG the index (searchable term) nodes mapping to each query term

(using function getNodeIDs(), line 4) 1. These will serve as starting nodes to navigate the SemIndex+ graph.

 Step 3: Every starting (index) node is then assigned to its own dedicated thread, and processed independently

from other starting nodes (line 5),

 Step4: For every starting (index) node, the minimum distance paths at from the starting node to data nodes are

identified, i.e., using Dijkstra’s shortest path algorithm (performed by function findShortestPaths(), line 7).

 Step 5: Of these shortest paths, the algorithm then identifies the paths which contain data nodes (using function

getDataNodeIDs(), line 8), reachable through the designated query attribute for every term, and then adds the

resulting data nodes to the list of output data nodes Nd_Out.

 Step 4: Consequently, the resulting data nodes are gradually merged with the list of existing answer data nodes as

they are produced by each thread2. A score is then assigned to every answer node by computing its relevance

score w.r.t. every query term’s index node (using mergeAndRank(), line 9). The algorithm finally returns the list

of answer data nodes, ranked in descending order following answer (data) node relevance scores (i.e., from the

most to the least relevant answer node).

 Step 5: Data node result selection (line 12) is undertaken using a combined range-kNN query selection operator,

following range query and kNN thresholds provided by the user. The user can choose to apply one, both, or none

of the two selection operators, by specifying (disregarding) the value of the corresponding threshold(s).

1 Initial index/query term mapping is performed regardless of query attributes. Term mapping identifies the leaf nodes of potential answer
trees in the SemIndex+ graph, which will be later pruned following the terms’ container attributes (if any) in Step 3 (graph navigation
phase) of the algorithm.

2 The physical implementation the querying algorithm is configured to run as many threads as necessary to process the different query terms
and starting nodes, where thread scheduling and parallel execution are left to the operating system.

Note that the scores of data nodes returned as query answers (i.e., answer tree root nodes) are computed/updated

dynamically while executing function findShortestPaths() based on typical Dijkstra shortest distance computations

[28]. Basically, findShortestPaths() explores the SemIndex+ graph with Dijkstra’s algorithm from multiple starting

index nodes ni_In (multiple query terms Ti). For each visited node nj, it stores its maximum relevance scores (minimum

distances) from all starting nodes (query terms). The relevance score of an index node nj (likewise for a data node nd)

w.r.t. a starting node (query term) ni_In is evaluated using our relevance score measure (Definition 8 -) applied along

the path between ni_In and nj (nd). In other words, the shortest distance of ni (nd) from ni_In is identified by computing

the maximum relevance score of ni (nd) w.r.t. ni_In.

Algorithm SI_ParallelSemanticSearch // SemIndex+ Parallel Semantic Search

Input:
SIG // SemIndex+ graph

 q // A conjunctive projection selection query, including link distance threshold

 {r, k} // range and k-nearest neighbor selection operators

Ouput: Nd_Out // A list of ranked data nodes from
SIG designating query answers

Begin

Nd_Out =

Create Thread for each (Ti , Aj) q // Processing each selection term simultaneously

{

Step 1: Ni_In = getNodeIDs(Ti, SIG) // Identify index nodes for every selection term

Create Thread for each ni Ni_In // Processing every (starting) index node simultaneously
{

Step 2: SP = findShortestPaths(ni, , SIG) // Identify shortest paths within distance from ni

Step 3: Nd_ni = getDataNodeIDs(SP,
SIG , Aj) // Identify the set of data (root) nodes in each shortest path

 //reachable from the term node ni through attribute Aj

Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out) // Merging and ranking data nodes based on relevance

}

Step 5: Nd_Out = select(Nd_Out, {range, kNN}) // Result Selection using range and/or kNN threshold(s)

Return Nd_Out
End

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 10. Pseudo-code of SemIndex+ parallel semantic search algorithm.

For example in Fig. 8.c, given query q = σplot (“pane”,“clean”)=3 (ΔPart) made of terms “pane” and “clean”, the

algorithm starts to expand from index nodes T7 and T3. In this example, we disregard (i.e., assign unit scores to) all

SemIndex+ node/edge weighting functions (to simplify computations) in evaluating our relevance score measure.

Hence, the relevance score of T7 is initialized as a vector of two scores <1, 0>, the first representing the relevance

score w.r.t. T7 (“pane”), i.e., score(T7, T7)=1, and the second representing relevance score w.r.t. T3 (“clean”, i.e.,

score(T7, T3) = 0 since T3 is not initially reachable from T7). Similarly, the weight score vector of T3 is initialized to

<0, 1>. The weights of all other index nodes are initialized to <0, 0>. The relevance scores are then updated when

each edge is explored in the graph. For example, starting from T7, the weight of index node S1, which was initialized

to <0, 0> becomes <1, 0> when the node is reached, where score(S1, T7) = 1 (relevance score at link distance =1

from T7) and score(S1, T3) = 0 (since S1 is not yet reachable from T3). Likewise, the weights of nodes T1 and O1

become <0.75, 0> and <0.6112, 0> respectively when the nodes are reached from T7, and so forth. On the other hand,

starting from T3, the weights of nodes S2, T5, and O1 become <0, 1>, <0, 0.75>, <0, 0.6112> respectively.

Consequently, given that a data node nd can be reached from multiple starting nodes Ni_In (i.e., multiple leafs in

the answer tree), function mergeAndRank() computes the combined relevance score of a data node (i.e., answer tree

root node) as the aggregate relevance scores from each starting node (each answer tree leaf node). As for the

aggregation function, various mathematical formulations for combining relevance scores can be used [5, 83], among

which the maximum, minimum, average and weighted sum functions. Here, we utilize the average aggregation

function to account for the average semantic relatedness between the query answer root node and all tree leaf nodes:

 _

_ having

score (,)d i In d

ii Inn s S

n avg score n n

(9)

For instance, considering our current example based on Fig. 8.c, the vector path score of data node O1 would be

<0.6112, 0.6112>, and thus its combined path score becomes 0.6112. Considering the example in Fig. 8.b, starting

from query terms “race car” and “light”, the vector path score of data node O1 would be <0.75, 1> (assuming unit

SemIndex+ node/edge weights as in the previous example), and thus its combined path score becomes 0.875. A data

node which is not reachable from all query term nodes will have at least one relevance score =0 (i.e., zero semantic

relatedness), along one (or more) of its relevance vector dimensions.

6. Complexity Analysis

Our solution is of quadratic complexity, requiring O(N
2
) time for building the SemIndex+ graph where N represents

the maximum size (in number of nodes) between the textual collection and the knowledge base, and O(Ni_acc
 2

) time

for executing semantic-aware queries where Ni_acc is the number of index nodes accessed during query execution.

6.1. Building SemIndex+

6.1.1. Time Complexity

Building SemIndex+ using algorithm SI_Construct (cf. Fig. 6) is done in quadratic time and simplifies to O(N
2
) since:

 Step 1: Building the inverted index, and consequently the SemIndex+ graph for the textual collection , i.e., G ,

is of typical O(|| |A| N) complexity, where |A| and N designate the number of attributes and the number of

searching terms in G respectively, which simplifies to O(|| N) since |A| is usually limited,

 Step 2: Also, building the SemIndex+ graph for the knowledge base KB, KBG , is of O(|KB| NKB), where NKB is

the number of searchable term nodes from KBG ,

 Step 3: Coupling both and KB’s SemIndex+ graphs by mapping and merging searchable term nodes in both

G and KBG can be performed in O(N + NKB) time, given that both underlying structures are sorted,

 Step 4: Connecting missing terms with the merged index, using the algorithm MissingTerms_Linkage (cf.

Appendix II) can be performed in worst case O(Nmiss Nterm), where Nmiss and Nterm respectively designate the

number of missing terms and the number of term index nodes in the SemIndex+ graph. Note that building the

distributional thesaurus (to identify term relatedness vectors, based on their co-occurrences in the reference

corpus) is conducted offline prior to SemIndex+ building and thus does not affect its complexity.

 Step 5: The complexity of the weighting process varies according the weight functions used. It amounts to O(1)

when assigning equal weights, and varies following our weighting scheme as follows:

 Data nodes: assigning an object rank score to compute data node weights simplifies to O(||+|Joins|),

where |Joins| designates the number of data links (i.e., foreign key/primary key data joins) in ,

 Attribute nodes: normalizing user defined attribute weights for every attribute of every data node

required O(|||A|) time, which simplifies to O(||) since |A| is small w.r.t. ||,

 Data edges: performing attribute-sensitive term frequency - inverse document frequency computations

to assign data edge weights comes down to O((Nterm)|||A|) time, which simplifies to O((Nterm) ||)

since|A| is small w.r.t. Nterm and ||,

 Index nodes: assigning an object rank score to compute index node weights simplifies to O(Ni + NEi),

where Ni designates the number of index nodes and NEi the number of index edges in the SemIndex+

graph,

 Index edges: computing index edge weights comes down to O(NEi

 |L|), where |L| designates the

number of distinct lexical/semantic relationships, which simplifies to O(NEi) since |L| is usually small.

 Step 6: Edge aggregation between each pair of index nodes in the SemIndex+ graph can be performed in

O((Nterm + Nsense)
2

/2) time where Nsense designates the number of sense index nodes, which is the time needed to

go through all pairs of index nodes in SemIndex+,

 Step 7: Removing edge labels and string values from non-searchable (i.e., sense) nodes in SemIndex+ can be

executed in O (NE + Nsense), where NE designates the number of index and data edges.

Hence, the overall complexity of our SemIndex+ building process is bounded by O(N
2
) >

1...7

 ()
i

iComplexity Step

 since N param, param complexity parameters.

6.1.2. Space Complexity

Our approach requires space to store the final SemIndex+ graph SIG , which is also bounded by O(N
2
) space, since

storing data nodes requires O(||) space, storing attribute nodes requires O(|A|) space, storing data edges (connecting

data nodes with searchable term nodes through attribute nodes) requires in the worst case O(|| + (N |A|)) space,

storing index nodes requires O(Nterm + Nsense) space, and storing index edges (connecting pairs of index nodes) requires

O((Nterm + Nsense)
2

/2) space (recall that only one edge exists between two nodes in SemIndex+). Note that these

relations, whose total size is bounded by O(N
2
), can be stored on disk or in memory according to the size of the input

textual collection and knowledge base used.

6.2. Query Processing

The complexity of our SI_PSS algorithm (cf. Fig. 10) which performs querying on SemIndex+, simplifies to O(M
2
) in

the worst case, and comes down to the sum of the complexities of its underlying functions, where for each query term:

 getNodeID() identifies the IDs of term nodes in the Lexicon corresponding to the query term, and thus requires

in the worst case O(Nterm + Nsense) time,

 findShortestPaths() runs Dijkstra’s algorithm to identify the minimum paths at distance from each of the

starting term nodes Nterm_hom (i.e., homonymous query terms), which comes down to O(Ni_acc
2
 Nterm_hom)

where Ni_acc designates the number of accessed index nodes in SemIndex+ when executing a query,

 getDataNodeIDs() identifies the IDs of data nodes in PostingList for each shortest path, requiring O(|| + N),

 mergeAndRank() merges and ranks data nodes with existing query answer nodes, by comparing the latter with

node IDs in the PostingList, thus requiring at most O(|| Nd_acc) where Nd_acc designates the number of

accessed data nodes when executing a query,

 select() selects data nodes as results, using range and/or kNN selection operators, requiring at most O(Nd_acc).

Hence, SI_PSS’s complexity comes down to that of function findShortestPaths() applied on k query terms while

multithreading, which requires O((k (Ni_acc
2
 Nterm_hom)) / |Threads|), where the algorithm allows as many

simultaneous shortest path calls as there are threads1. It simplifies to O((k Ni_acc
2
) / |Threads|), which can further

simplify to O(Ni_acc
2
 / |Threads|) given that k is usually limited (e.g., keyword queries on the Web are usually 2-3

words long [53]), and is bounded by O(Ni_acc
2
) in the worst case (when applied on single thread/non-parallel systems).

7. Experimental Evaluation

We first start by describing our prototype and experimental scenario, and then we present experimental results.

7.1. Prototype System

We have implemented the SemIndex+ framework using open source technologies, namely: Java as the programming

platform, MongoDB2 to handle the textual collection, WordNet 3.0 as the reference knowledge base, and MySQL 5.6

to persist the graph structures of SemIndex+. The physical design of SemIndex+ is shown in Fig. 11. We chose to

handle it using a well known RDBMS (i.e., MySQL) to take advantage of its different useful features, including

concurrency control and powerful index and memory management: allowing bulk index data loading and fast query

execution3. Note that SemIndex+’s physical design is independent of the DB structure and system used, and can be

built directly on top of the file system, or using any other DB system. The prototype system is available online4.

a. Conceptual ER model describing SemIndex+’s

physical design.

b. Data representation of each relation in the resulting DB schema.

Fig. 11. SemIndex+ physical design.

1 In the physical implementation of the algorithm, thread scheduling and parallel execution are left to the operating system.
2 NoSQL DB using BSON binary format for storing documents in the JSON format, https://www.mongodb.com/
3 Preliminary experiments showed that handling SemIndex+ using MySQL was more efficient in build time and query execution time,

compared with MongoDB, which we will highlight in a dedicated study.
4 Available at: http://sigappfr.acm.org/Projects/SemIndex/

Entity Relationship Attribute

DataIndex

Lexicon

Posting List

Neighbors

Attributes

7.2. Experimental Scenario and Test Data

We evaluated the practical usability of our indexing approach by assessing four main criteria: i) index building time,

ii) index size and characteristics, iii) query processing time, and iv) the quality of returned results. To do so, we varied

the size of the input textual collection by generating different extracts w.r.t. its total size (considering 10%, 20%, …,

or 100% of). We also varied the size of the input knowledge base by generating different extracts w.r.t. its total size

(considering 10%, 20%, …, or 100% of KB). Then, for each doublet < chunk ; KB chunk>, we evaluated each of the

above four criteria by varying related parameters.

We used the IMBD movies dataset1 as an average-scale2 input textual collection, including attributes movie_id

and (title, year, plot, genre, info) with a total size of around 75 MBytes including more than 7 million data (movie)

objects. Three versions of the movies data collection were considered: the original (structured) version (cf. Table 1), a

flat version where all attribute contents were concatenated in one column (cf. Table 2), and a partly structured version

where certain attribute contents were randomly combined or omitted (cf. Table 3). In the remainder of this paper, we

utilize the NoSQL version of IMDB movies to perform our experiments. WordNet 3.0 has a total size of around 26

Mbytes, including more than 117k synsets (senses). IMBD and WordNet chunk characteristics are summarized in

Appendix I. Tests were carried out on a PC with an Intel I7 system with 2.9 GHz CPU, and 8GB RAM. [34]

7.3. Index Building Time

Fig. 12.a shows the total time required to build SemIndex+ while varying both IMBD and WordNet chunks. One can

realize that the building time is linear in the size of the IMDB chunks on one hand (x axis), and linear on the size of

the WordNet chunks on the other hand (y axis), which underlines quadratic time dependency w.r.t. both of them

(which complies with our complexity analysis). We also measured the total time required to build the traditional

inverted index (which we note InvIndex) while varying IMDB chunk size3 (cf. Fig. 12.b) and compared results with

SemIndex+’s (cf. Fig. 12.c). While both indices require linear building time, yet SemIndex+ requires almost twice

(2) as much build time as InvIndex. Also, by disregarding the lemmatization phase in building InvIndex (which can

be ignored following the data manager’s preference: storing words in their actual rather than their original form), then

SemIndex+ build time becomes almost four times (4) greater than that of InvIndex. This is encouraging since even

the fastest inverted index creation time is only (at best) four times lesser than the creation time of SemIndex+. The

reasons for this are: i) the lightweight physical design of SemIndex+ which can be easily created using fast legacy

database technology, and ii) the sheer difference in size between the textual data collection (IMBD movies) and the

reference knowledge graph (WordNet), which renders the build time of SemIndex+ mostly dependent on IMDB size.

Regardless of the above, note that the index building process is done offline, prior (in preparation) to the system

usage (query evaluation process), and thus does not affect (online) query execution time.

a. SemIndex+ build time variation w.r.t.

input IMDB and WordNet chunk sizes

b. Breakdown of SemIndex+ build time

with WordNet chunk = 100%

c. Comparing InvIndex and SemIndex+

build time using WordNet chunk = 100%

Fig. 12. Breakdown of SemIndex+ build time, compared with InvIndex build time.

1 Internet Movie DataBase raw files are available from online http://www.imdb.com/. We used a dedicated data extraction tool (at

http://imdbpy.sourceforge.net/) to transform IMDB files into a RDB.
2 Tests using large-scale TREC data collections and the Yago ontology as a reference KB are underway within a dedicated study.
3 Recall that InvIndex does not incorporate semantic knowledge and thus is not affected by WordNet chunk size variations.

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(i

n
 s

ec
o

n
d

s)

IMDB Chunks

10% 20% 30%
40% 50% 60%
70% 80% 90%
100%

0

50

100

150

200

250

300

350

400

10%
100%

20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(i

n
 s

ec
o

n
d

s)

IMDB Chunks

Average Wordnet time
Average DataIndex - SQL time
Average DataIndex Lemmatization time
Average Missing Terms Processing time
Average Join Time
Average Total Time

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(i

n
 s

ec
o

n
d

s)

IMDB Chunks

Average SemIndex build time

Average InvIndex build time

Average Inv. Index build time
(without Lemmatization)

WordNet chunks:

7.4. Index Size and Characteristics

Regarding SemIndex+ size, Fig. 13.a shows that the SemIndex+ graph size varies linearly with the size of the IMDB

chunks (x axis) and WordNet chunks (y axis), which underlines quadratic size dependency w.r.t. both of them

(conforming with our complexity analysis). The characteristics of SemIndex+ chunks are shown in Fig. 13.b (and

Appendix I), where each chunk is generated by merging the corresponding < chunk ; KB chunk> doublet (for

instance, the 10% SemIndex+ chunk is generated by merging the 10% chunk with the 10% KB chunk, and so forth).

a. SemIndex+ size variation w.r.t. input

IMDB and WordNet chunk sizes

b. Breakdown of the number of nodes in

the SemIndex+ graph

c. Comparison with InvIndex size

Fig. 13. SemIndex+ size characteristics and comparison with InvIndex size.

First, results show that the number of nodes in the SemIndex+ graph increases almost linearly w.r.t. SemIndex+

(and thus IMDB and WordNet) chunks size. Second, one can realize that the number of index nodes resulting from

missing terms is almost twice that of matching index terms. That is due to the fact that the IMDB movies table

includes many textual tokens which are not part of the general purpose English language and thus do not appear in

WordNet (e.g., terms like “advogado”, “advon”, “adyeri”, “aeer”, “moustafa”, etc.). We are currently investigating

ways to further alleviate the missing terms problem, using dedicated language processors and multilingual

dictionaries, which will be covered in an upcoming study.

In addition, we have also measured the characteristics and size of InvIndex in comparison with SemIndex+ (cf.

Fig. 13.c). Results show that SemIndex+’s size is larger only by (almost) 1/3
rd

 of the size of InvIndex. This increase in

size is less pronounced than the increase in build time of SemIndex+ (which was 4 times larger) compared with

InvIndex. This is due to the difference in sizes between the textual data collection (IMBD movies) and the knowledge

graph (WordNet) used: WordNet (26 MBytes) is almost 1/3
rd

 the size of IMDB (75 MBytes), which reflect in the

sizes of SemIndex+ (coupling IMDB with WordNet) and InvIndex (referencing IMDB only).

7.5. Query Processing Time

To test the performance of SemIndex+, we formulated different kinds of queries categorized following four main

criteria shown in Table 4: i) unrelated queries with varying number of attributes, ii) unrelated queries without

attributes, iii) expanded queries with varying number of attributes, and iv) expanded queries without attributes.

The first query group Q1 consists of queries with varying numbers of selection terms (keywords) from 1-to-5,

where all terms are different and all queries are unrelated, such that the number of attributes per query varies from 1-

to-3. The second query group Q2 consists of queries made of unrelated terms without attributes (i.e., queries targeting

the whole textual contents of the searched objects). Query groups Q3 and Q4 are comparable to Q1 and Q2

respectively, except that queries are related such that each query expands its predecessor by adding an additional

selection term to the latter. In other words, groups Q1 and Q3 consist of NoSQL keyword queries whereas Q2 and Q4

consist of “traditional” unstructured keyword queries.

Each query was tested on every one of the 100 combinations of SemIndex+ generated by combining the different

chunks of the IMDB movies data collection (10%, 20%, …, 100%) with every chunk of WordNet (10%, 20%, …,

100%), at link distance threshold values varying from = 1 to 5 (i.e., increasing semantic coverage).

7.5.1. SemIndex+ Query Processing Time

On the one hand, the graph in Fig. 14.a plots SemIndex+’s query execution time averaged over all queries, considering

different IMBD and WordNet chunk sizes, with a fixed number of query terms k and a fixed link distance threshold .

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Si
ze

 (
in

 M
B

yt
es

)

IMDB Chunks

10% 20%
30% 40%
50% 60%
70% 80%
90% 100%

0

25

50

75

100

125

150

175

200

225

250

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N

o
f

N
o

d
es

 (

1
0

0
0)

SemIndex+ chunks

Synsets

Data Nodes

Index Terms

Missing Index Terms

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Si
ze

 (
in

 M
B

s)

SemIndex+ chunks

SemIndex InvIndex

WordNet chunks:

 SemIndex+

Results show that query execution is linear in both IMBD and WordNet chunk sizes, and thus is quadratic w.r.t. both

of them (verifying our complexity analysis). On the other hand, the graphs in Fig. 14.b highlight the effects of varying

the number of query terms k and varying link distance w.r.t. fixed IMDB and WordNet chunk sizes. One can see that

processing time is linear w.r.t. the number of query terms, and quadratic w.r.t. link distance, which corresponds to the

time complexity of SemIndex+’s querying algorithm in navigating the edges (pairs of nodes) of the SemIndex+ graph.

Table 4. Sample test queries used in our experiments.

Group Q1

Unrelated queries with varying number of attributes

Group Q2

Unrelated queries without attributes1

Q1_1 σtitle (“time”)ΔIMDB
2 Q2_1 σ (“music”)ΔIMDB

Q1_2 σtitle (“love”, “date”)ΔIMDB Q2_2 σ (“romance”, “dinner”)ΔIMDB

Q1_3 σtitle (“fly”, “power”) plot (“man”) ΔIMDB Q2_3 σ (“teen”, “party”, “home”) ΔIMDB

Q1_4 σtitle (“robot”, “human”) plot (“war”, “world”) ΔIMDB Q2_4 σ (“west”, “cowboy”, “peacekeeper”, “sheriff”) ΔIMDB

Q1_5 σtitle (“mafia”, “kill”) plot (“mob”, “hit”) (“family”) ΔIMDB Q2_5 σ (“trip”, “road”, “city”, “group”, “fun”) ΔIMDB

Group Q3

Expanded queries with varying number of attributes

Group Q4

Expanded queries without attributes1

Q3_1 σtitle (“auto”)ΔIMDB Q4_1 σ (“car”)ΔIMDB

Q3_2 σtitle (“auto”, “muscle”)ΔIMDB Q4_2 σ (“car”, “explosion”)ΔIMDB

Q3_3 σtitle (“auto”, “muscle”) plot (“classic”) ΔIMDB Q4_3 σ (“car”, “explosion”, “race”) ΔIMDB

Q3_4 σtitle (“auto”, “muscle”) plot (“classic”, “speed”) ΔIMDB Q4_4 σ (“car”, “explosion”, “race”, “guns”) ΔIMDB

Q3_5 σtitle (“auto”, “muscle”) plot (“classic”, “speed”) (“thrills”) ΔIMDB Q4_5 σ (“car”, “explosion”, “race”, “guns”, “shootout”) ΔIMDB

Note that varying the number of attributes did not show any detectable impact on query execution time since,

they almost do not affect the size of SemIndex+ neither do they affect the complexity of query search algorithm

(compared with the relatively huge numbers of data and index nodes involved).

a. Varying IMDB and WordNet chunk sizes, with fixed number of query terms

k=5 and fixed link distance threshold = 5

b. Varying k and , with fixed IMDB and

WordNet chunk sizes (=100% each)

Fig. 14. Query execution time, using SemIndex+’s SI_PSS algorithm, averaged over all queries.

7.5.2. Comparing Query Processing Time with Alternative Solutions

We ran the same querying tasks using four alternative querying approaches adapted from the literature: InvIndex [62],

QueryRelax [64], QueryDisam [7], and QueryRefine [67] (cf. Appendix III), and compared the obtained query time

1 Recall that designates a data object’s combined textual content from all attributes.
2 Recall that we utilize the NoSQL version of IMDB movies to perform our experiments (cf. Section 7.2).

5
10%

5
20%

5
30%

5
40%

5
50%

5
60%

5
70%

5
80%

5
90%

5
100%

Q
u

er
y

Ti
m

e
(i

n
 s

ec
o

n
d

s)

IMDB Chunk

10% - 5
20% - 5
30% - 5
40% - 5
50% - 5
60% - 5
70% - 5
80% - 5
90% - 5
100% - 5

1 2 3 4 5

Q
u

er
y

ti
m

e
(i

n
 s

ec
o

n
d

s)

N# of query terms k

1
2
3
4
5

WordNet
chunks 9

8

7

6

5

4

3

2

1

0

Link distance

9

8

7

6

5

4

3

2

1

0

results with SemIndex+’s querying algorithm. Fig. 15 and Fig. 16 show average query execution time, plotted by

varying the number of query terms k (in Fig. 15) and SemIndex+ link distance threshold (in Fig. 16). First, results

show that SemIndex+ and its alternatives have very close query time levels when link distance is small (=1 and

=2), such that SemIndex+ time increases as link distance increases (whereas the other algorithms’ query time is

naturally invariant w.r.t. variations in , cf. Fig. 16). Second, Fig. 15 shows that query time for SemIndex+ and all

three alternative solutions (namely QueryDisam and QueryRefine) almost linearly increases with the number of query

terms k1, such that the pace of SemIndex+’s time increase is relatively low with small link distances (=1 and =2) and

the pace augments when reaching higher link distance thresholds (=3-to-5). Third, one can realize that the most time

consuming alternative approaches are QueryDisam and QueryRefine: i) QueryDisam and QueryRefine are more time

consuming than SemIndex+ when the latter is run with link distances (3), but they are both surpassed by

SemIndex+ when the latter is run with higher link distances(=4 and =5). Here, QueryDisam’s computational

overhead is due to the complexity of the query keywords’ semantic disambiguation process, whereas QueryRefine’s

overhead2 is due to post-processing the first round of query results in order to refine/rewrite query keywords

accordingly. Algorithms InvIndex and QueryRelax share very close time levels and are the most efficient among the

five solutions (including SemIndex+), running most queries almost instantaneously (under 0.14 seconds). This is

expected since both approaches perform traditional syntactic query processing (and do not involve computationally

expensive semantic processing) with one difference: InvIndex runs on the original query terms, whereas QueryRelax

runs on an expansion of the original terms (adding the terms’ synonymous words to the original keyword query).

a. Link distance = 1 b. Link distance = 2 c. Link distance = 3

e. Link distance = 4

f. Link distance = 5

Fig. 15. Comparing SemIndex+ query time with four alternative solutions while varying the number of query

terms k and fixing link distance (the latter affecting SemIndex+ only).

a. N# of query terms k = 1 b. N# of query terms k = 2 c. N# of query terms k = 3 d. N# of query terms k = 4 e. N# of query terms k = 5

*

Fig. 16. Comparing SemIndex+ query time with four alternative solutions while varying link distance threshold

(affecting SemIndex+) and fixing the number of query terms k.

7.5.3. Discussion

By comparing SemIndex+’s query execution time with existing alternative solutions (InvIndex, QueryRelax,

QueryDisam, and QueryRefine), we can highlight various observations: i) SemIndex+ is more computationally

1 Both InvIndex and QueryRelax time levels increase with k, even though these are not clearly visible in the graphs of Fig. 15 and Fig. 15
due to their scale. The reader can refer to the actual data behind the graphs at: http://sigappfr.acm.org/Projects/SemIndex/

2 QueryRefine’s time shown in Fig. 16 and Fig. 17 does not encompass the time it took the testers to manually choose the new query terms
(which we did not consider to be part of the algorithm itself), but only considers actual algorithm (CPU and SQL) execution time.

0

2

4

6

8

10

0 1 2 3 4 5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
QueryRefine

0

2

4

6

8

10

0 1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

QueryRefine

0

2

4

6

8

10

0 1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
QueryRefine

0

2

4

6

8

10

0 1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

2

4

6

8

10

0 1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

2

4

6

8

10

12

0 1 2 3 4 5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

Link distance

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

2

4

6

8

10

12

0 1 2 3 4 5

Link distance

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

2

4

6

8

10

12

0 1 2 3 4 5

Link distance

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

2

4

6

8

10

12

0 1 2 3 4 5

Link distance

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

2

4

6

8

10

12

0 1 2 3 4 5

Link distance

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

+ + +

+ +

+ + + + +

SemIndex+ SemIndex+ SemIndex+

SemIndex+ SemIndex+

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+

expensive than syntactic solutions such as InvIndex and QueryRelax, ii) Involving query disambiguation

(QueryDisam) is clearly computationally expensive (due to the complexity of the word sense disambiguation process

applied on the query keywords) and hinders query performance, iii) Involving query refinement (through

QueryRefine, producing the first round of results, allowing the user to refine query keywords, and then producing the

second round of results) adds computational overhead, iv) The time to navigate the semantic graph, following the

allowed link distance , remains the foremost determining factor in SemIndex+ query execution time. SemIndex+

executes faster than QueryDisam and QueryRefine with low (3) but then requires more time than the latter when

increases (to =4 and 5), v) SemIndex+ search can benefit from parallelization, and can execute even faster when run

on more powerful parallel processing systems (such as advanced multi-core, cluster, or grid computing platforms).

We omit the latter experimental results here for ease of presentation and report the detailed evaluation of

parallelization and its impact on SemIndex+ to a later dedicated study.

7.6. Query Result Evaluation

7.6.1. Result Quality Evaluation Metrics
In addition to evaluating SemIndex+’ efficiency (processing time), we also evaluated its effectiveness (result quality),

i.e., evaluating the interestingness of semantic-aware answers from the user’s perspective. To do so, we collected the

results of our test queries and mapped them against user feedback (user judgments, utilized as golden truth) evaluating

the quality of the answers produced by the system by computing precision, recall, f-value, and mean average

precision metrics commonly utilized in IR evaluation [65]. Formally:

 [0,1]
a

PR
a b

 [0,1]
a

R
a c

2

- [0,1]
PR R

F Value
PR R

 (10)

where a is the number of retrieved data objects that indeed correspond to the query’s result list (correctly retrieved), b

is the number of retrieved data objects that do not correspond to the query’s result list (wrongly retrieved), and c is the

number of data objects that are not retrieved, although they correspond to the query’s result list (data objects that

should have been retrieved). F-value represents the harmonic mean of precision and recall, such that high precision

and recall, and thus high f-value characterize good retrieval quality [65]. Also, we employed mean average precision

(MAP) to evaluate the ranking of relevant results w.r.t. non-relevant ones in the query result list:

1..

([] [])

 [0,1]
j n

PR j rel j

MAP
N

 (11)

where n be the number of hits (i.e., returned data objects) in the query result list, PR[j] is precision at hit j, rel[j] is

equal to 1 if the jth data object in the result list is relevant and 0 otherwise, and N = a+c is the total number of data

objects in the data collection which are relevant for the query. MAP is maximum, i.e., = 1, when the system retrieves

all relevant data objects (i.e., recall = 1) and ranks them perfectly: all of them appearing before non-relevant data

objects in the query list (i.e., precision at Nth hit =1); and decreases as more non-relevant data objects are introduced

before relevant ones in the result list.

Ten test subjects (six master students, and four doctoral students, who were not part of the system development

team) were involved in the experiment as human judges. Testers were asked to evaluate the quality of the top 100

results (movie objects returned) per query (produced by SemIndex+ and its 3 alternatives). Here, only queries

consisting of two keywords or more were considered, given that 1 single term queries (e.g., Qi_1) were deemed two

fuzzy and coarse-grained for the testers to judge their results1. Query results were randomized before being shown to

testers. Manual relevance ratings (in the form of integers {-1, 0, 1}, i.e., {not relevant, neutral, relevant}) were

acquired for each query answer. Then, we quantified inter-tester agreement, by computing pair-wise correlation

scores2 among testers for each of the rated query answers, and subsequently selected the top 100 hundred answers per

query having the highest average inter-tester correlation scores3, which we utilized as the experiment’s golden truth.

1 A great many movies can be retrieved as answers for query Q1_1: σtitle (“time”)
ΔIMDB given single term “time” alone is too broad for

human testers to make sense of the query. The same goes for the other three single term queries: Q2_1, Q3_1, and Q4_1 (Table 4).
2 Using Pearson Correlation Coefficient (PCC), producing scores [-1, 1] such that: -1 designates that one tester’s ratings is a decreasing

function of the other tester’s ratings (i.e., answers deemed relevant by one tester are deemed irrelevant by the other, and vice versa), 1

designates that one tester’s ratings is an increasing function of the other tester’s ratings (i.e., answers are deemed relevant/irrelevant by

testers alike), and 0 means that tester ratings are not correlated.
3 Having average inter-tester PCC score 0.5.

7.6.2. Comparing SemIndex+ Result Quality with Alternative Solutions

Fig. 17 shows the precision, recall, f-value, and MAP results obtained with SemIndex+’s querying algorithm and

alternative solutions: InvIndex [62], QueryRelax [64], QueryDisam [7], and QueryRefine [67]. Results averaged per

link distance and number of query terms k are provided in Table 5. These highlight several observations.

1) Precision and recall with link distance: One can realize that precision levels with SemIndex+ while

fluctuating, generally increase with link distance () until reaching = 3 or = 4 where precision starts to decrease

toward = 5. However, one can realize that recall levels steadily increase with (with reduced fluctuation compared

with precision). On the one hand, this shows that the number of correct (i.e., user expected) results increases as more

semantically related terms are covered in the querying process (with > 1). On the other hand, this also shows that

over-navigating the SemIndex+ graph to link terms with semantically related ones located as far as 3 hops away

might include results which: i) are somehow semantically related to the original query terms, but which ii) are not

necessarily interesting for the users. For instance, term “congo” (meaning: black tea grown in China) is linked to term

“time” through = 5 hops in SemIndex+ (“time” >> “snap” >> “reception” >> “tea” >> “congo”). Yet, results (movie

objects) containing term “congo” (e.g., movies about the country Congo, or its continent Africa) were not judged to

be relevant by human testers when applying query “time” (testers were probably expecting movies about the passage

of time or time travel instead, etc.)1. Many such examples occurred when running multiple term queries such as Q1_4

(consisting of terms “robot”, “human”, “war”, “world”)2, where movies like The Taking of Pelham One Two Three3

and Showtime4 (among others) where returned as results by SemIndex+’s querying algorithm when reaching =5.

Such results were deemed not relevant by the testers since they do not correspond to the semantics of the query.

2) Precision and recall with the number of query terms: Here, one can realize that precision levels tend to

stagnate or even decrease when increasing the number of terms k – with queries having low link distance thresholds

(2-or-3) ; whereas precision tends to increase with the increase of k – with queries having higher link distances (

 3-or-4). A similar behavior can be seen with recall levels: using more query terms (increasing k) produces lesser

results when link distance is low. For instance, running query Q1_4 with link distance =1 requires the returned movie

objects to contain exact occurrences of all 4 query terms: “robot”, “human”, “war” and “world”, hence in our case

producing zero (no) results whatsoever with all four SemIndex+ algorithms. Yet, as link distance increases, more and

more (semantically related) results are retrieved (i.e., 0, 5, 253, and 1363 results were produced by SemIndex+ as

answers for query Q1_4 with =2, 3, 4, and 5 respectively). In other words, as increases, so do the chances of

producing more results with (lower and especially) higher k values, which in turn improves both precision (retrieving

more relevant results) and recall (missing out less relevant results).

3) Regarding f-value and MAP, levels clearly increase with the increase of link distance , whereas they show the

same fluctuating behavior with the increase of the number of keywords k as mentioned and discussed in the previous

paragraph. First, f-value levels confirm the precision and recall levels obtained above, where the determining factor

affecting retrieval quality remains link distance , whereas an increase in the number of keywords k tends to reduce

system recall with lower values of and increase recall with higher values of . Second, MAP levels seem to concur

with those of f-value, such that the ranking of relevant results compared with non-relevant ones in the queries’ result

lists seems to increase with the increase of and fluctuate (based on the values of) with the increase of k. In other

words, increasing not only allowed retrieving more relevant results, but also allowed dropping non-relevant ones

(from the selected top 100 results of the query result list), and consequently improved the ranking of relevant results

w.r.t. non-relevant ones in the query result list.

4) Comparison with alternative solutions: First, considering all four metrics, one can realize that SemIndex+

performs similarity to alternative solutions at lower link distances (2), and then increasingly surpasses the latter as

 increases (3). This emphasizes the central impact of link distance in improving SemIndex+ performance

(highlighted above). Second, considering results compiled over all link distances combined, one can clearly realize

that SemIndex+ surpasses its alternatives considering both f-value and MAP, i.e., in both result quality and ranking.

InvIndex naturally produced the worst f-value and MAP results since it is not semantic aware and only returns exact

(syntactic) matches to query terms.

1 Even though testers had difficulty agreeing on the results of single keyword queries as mentioned previously, yet such cases occurring at

link distance =4 or 5 were clearly deemed irrelevant by all testers.

2 Query Q1_4: σtitle (“robot”, “human”) plot (“war”, “world”) ΔIMDB
3 2009 movie starring Denzel Washington and John Travolta, about a train hijacking in New York city.
4 2002 comedy movie starring Eddy Murphy and Robert De Niro, about police officers starring in a reality TV show.

a. Link distance = 1 b. Link distance = 2 c. Link distance = 3 e. Link distance = 4 f. Link distance = 5

a. Link distance = 1 b. Link distance = 2 c. Link distance = 3 e. Link distance = 4 f. Link distance = 5

a. Link distance = 1 b. Link distance = 2 c. Link distance = 3 e. Link distance = 4 f. Link distance = 5

a. Link distance = 1 b. Link distance = 2 c. Link distance = 3 e. Link distance = 4 f. Link distance = 5

Fig. 17. Comparing precision (PR), recall (R), f-value, and mean average precision (MAP) results obtained using

SemIndex+’s querying versus alternative solutions.

7.7. Discussion

To sum up, we evaluate in Table 6 the ratio (expressed in percentage) of increase in query execution time, as well as

the ratio (percentage) of increase in query result quality (considering average MAP scores) when using SemIndex+’s

querying algorithm versus alternative solutions (detailed results are provided in Appendix I):

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

P
re

ci
si

o
n

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

R
ec

al
l

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex.

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

F-
va

lu
e

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

M
A

P

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

+ + + + +

+ + + + +

+ + + + +

+ + + + +

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+

(,)
SemIndex Alt

Efficiency

Alt

QueryTime QueryTime
SemIndex Alt

QueryTime

,()
SemIndex Alt

Effectiveness

Alt

MAP MAP
SemIndex Alt

MAP

 (12)

Results in Table 6 highlight various observations: i) SemIndex+ querying requires an average 1701.74%,

1622.48%, 26.99%, and 21.83% more processing time than InvIndex, QueryRelax, QueryDisam, and QueryRefine

respectively; ii) SemIndex+ improves query result quality levels by 543.67%, 472.64%, 238.31%, and 156.31%

compared with InvIndex, QueryRefine, QueryRelax, and QueryDisam respectively; iii) SemIndex+ is costlier in

computation time compared with its alternatives, nonetheless, it is also clearly and significantly more effective in

producing higher quality results; iv) SemIndex+ can be most clearly appreciated when compared with QueryDisam

where its improvement in query result quality (156.31%) clearly surpasses by 5.82 times its increased query execution

time (26.88%), such that the time “effort” put in query execution time more than quintupled the system’s increase in

query result quality. Even more pronounced, SemIndex+’s (21.83%) increase in query time w.r.t. QueryRefine

produced a significant 21.65 times increase in result quality (472.64%).

Table 5. Average PR, R, f-value, and MAP (Appendix I) Table 6. Average Efficiency and Effectiveness (Appendix I)

 PR R F-value MAP Efficiency100 Effectiveness 100

SemIndex+ 0.3636 0.2085 0.2815 0.1393 InvIndex 1701.74% 543.67%

InvIndex 0.2758 0.0327 0.1543 0.0273 QueryRelax 1622.48% 238.31%

QueryRelax 0.2179 0.1412 0.1796 0.0527 QueryDisam 26.88% 156.31%

QueryDisam 0.2639 0.1281 0.1960 0.0570 QueryRefine 21.83% 472.64%

QueryRefine 0.3762 0.0508 0.2135 0.0394

8. Conclusion

This paper introduces SemIndex+, a framework for semantic-aware DB indexing and querying of unstructured (free-

text), structured (relational), and partly-structured (NoSQL) textual data. At the indexer level, SemIndex+ creates a

hybrid graph structure using a tight coupling between two resources: a general purpose semantic network, and a

standard inverted index defined on a collection of textual data. The index is extended to handle varying multi-attribute

data collections (using attribute-sensitive indexers), handling terms with missing semantic connections (i.e., missing

terms), and introducing a model for weighting SemIndex+ entries (i.e., the graph’s nodes and edges). At the query

processing level, the framework provides a parallelized (multithreaded) querying algorithm, coupled with a dedicated

relevance scoring measure allowing to retrieve and rank relevant query answers. Our theoretical study and empirical

evaluation highlight interesting observations: i) SemIndex+’s structure can be built in average linear time, and its size

is of average linear space w.r.t. the sizes of the input data and knowledge sources used, ii) query processing time is

linear in the size of the SemIndex+ structure, and varies linearly w.r.t. to the number query terms (keywords) as well

as the link distance threshold designating the breadth of the SemIndex+ graph to be covered during querying, iii)

following the chosen link distance threshold, SemIndex+ is more or less costly in query processing time compared

with alternative solutions (i.e., inverted index search, query relaxation, query disambiguation, and query refinement),

nonetheless, iv) it is usually and significantly more effective in producing semantic-aware and higher quality results,

such that SemIndex+’s improvement in query result quality clearly surpasses its increased query execution time.

We are currently exploring various techniques to improve SemIndex+ query processing time. First, we have

started testing the querying algorithm on a parallel processing platform (using the open source Apache Hadoop1).

Preliminary results show a significant reduction in query execution time as the number of concurrent threads (multi-

cores) increases toward matching the number of query terms and staring index nodes. We are also investigating DB

index partitioning techniques (horizontal [84], vertical [1], and graph-based [48]) to distribute SemIndex+ on multiple

sites in order to allow more parallelization. We also plan to investigate query-driven optimization techniques, such as

multi-term indexing [86] (i.e., associating more than one single term with every entry in the seed inverted index,

(<term1, term2, …, termN> docIDs[]) which could be useful to reduce processing overhead for intersecting the

inverted lists of multi-term queries, as well as incremental query result fetching [75] (returning successive subsets of

the partial results until the final result is “good” enough, such that the minimum number of responses or the minimum

range satisfying the query are found). Extending SemIndex+ to perform incremental result fetching could prove to be

efficient by limiting the breadth and depth of the SemIndex+ graph navigated by the querying algorithm.

Acknowledgements

This study is partly funded by the National Council for Scientific Research – Lebanon (CNRS-L), the Lebanese

American University (LAU), the Fulbright Visiting Scholar program (sponsored by the US Department of State), and

the Research Support Foundation of the State of Sao Paulo (FAPESP). We would also like to thank LAU graduates

Christian Kallas and Marc Al Assad who helped implement different components of the SemIndex+ prototype system.

1 http://hadoop.apache.org/

References

[1] Abadi D.J. et al., SW-Store: a vertically partitioned DBMS for Semantic Web data management. VLDB Journal, 2009. 18(2): 385-406.

[2] Agarwal M.K., Ramamritham K., and Agarwal P., Generic Keyword Search over XML Data. International Conference on Extended

DataBase Technology (EDBT'16), 2016. pp. 149-160.
[3] Agirre E. and Edmonds P., Word Sense Disambiguation: Algorithms and Applications. Dordrecht: ISBN 978-1-4020-4809-8, 2006.

[4] Agrawal S., et al., Exploiting Web Search Engines to Search Structured Databases. World Wide Web Conference (WWW'09), 2009.

pp. 501-510.
[5] Algergawy A., Nayak R., and Saake G., Element Similarity Measures in XML Schema Matching. Elsevier Information Sciences, 2010.

180(24): 4975-4998

[6] Allan J., et al., Frontiers, Challenges, and Opportunities for Information Retrieval Report from SWIRL 2012 the Second Strategic
Workshop on Information Retrieval - SIGIR Forum 2012. 46(1): 2-32.

[7] Allan J. and H. Raghavan, Using Part-of-Speech Patterns to Reduce Query Ambiguity. In 25th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2002. pp. 307-314, Tampere, Finland: ACM Press, New York.
[8] Andreasen T., et al., Conceptual Indexing of Text Using Ontologies and Lexical Resources, . Inter. Conf. on Flexible Query Answering

Systems (FQAS'09) 2009. pp 323-332.

[9] Baeza-Yates R. and Ribeiro-Neto B., Modern Information Retrieval: The Concepts and Technology behind Search. ACM Press Books,
Addison-Wesley Professional, 2nd Ed., 2011. p. 944.

[10] Bao Z., et al., A Query Refinement Framework for XML Keyword Search. World Wide Web 2017. 20(6):1469-1505.

[11] Bast H. and Buchhold B., An Index for Efficient Semantic Full-Text Search. Proceedings of the 22nd ACM International Conference
on information & knowledge Management (CIKM '13), 2013. pp. 369-378

[12] Baziz M., et al., An Information Retrieval Driven by Ontology: from Query to Document Expansion. Large Scale Semantic Access to

Content: Text, Image, Video, and Sound (RIAO'07), 2007. pp. 301-313.
[13] Bednar Peter, Sarnovsky M., and Demko V., RDF vs. NoSQL databases for the Semantic Web applications. IEEE 12th International

Symposium on Applied Machine Intelligence and Informatics (SAMI'14), 2014. pp. 361-364.

[14] Bergamaschi S., et al., Combining User and Database Perspective for Solving Keyword Queries over Relational Databases.
Information Systems, 2016. 55: 1-19.

[15] Blanco R., Mika P., and Vigna S., Effective and Efficient Entity Search in RDF data. In International Semantic Web Conference

(ISWC'11), 2011. pp. 83–97.
[16] Budanitsky A. and Hirst G., Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational Linguistics, 2006.

32(1): 13-47.

[17] Burton-Jones A., et al., A Heuristic-Based Methodology for Semantic Augmentation of User Queries on the Web. In Proceedings ot the
International Conference on Conceptual Modeling (ER'03), 2003. pp. 476–489.

[18] Calvo H., Gelbukh A.F., and Kilgarriff A., Distributional Thesaurus Versus WordNet: A Comparison of Backoff Techniques for

Unsupervised PP Attachment. Conf. on Computational Linguistics and Natural Language Processing (CICLing'05) 2005. pp. 177-188.
[19] Carpineto C. and Romano G., A Survey of Automatic Query Expansion in Information Retrieval, . ACM Computing Survey, ACM

New York, NY, USA, 2012. 44(1):1.

[20] Carpineto C., Romano G., and Giannini V., Improving Retrieval Feedback with Multiple Term-Ranking Function Combination. ACM
Transactions on Information Systems (TOIS), 2002. 20(3):259-290

[21] Chandramouli K., et al., Query Refinement and user Relevance Feedback for contextualized image retrieval. 5th International
Conference on Visual Information Engineering (VIE), 2008. pp. 453 - 458.

[22] Charbel N., et al., Resolving XML Semantic Ambiguity. International Conference on Extending Database Technology (EDBT'15),

2015. Brussels, Belgium, pp 277-288.
[23] Chbeir R., et al., SemIndex: Semantic-Aware Inverted Index. 18th East-European Conference on Advanced Databases and Information

Systems (ADBIS'14), 2014. pp. 290-307.

[24] Chen L.J. and Papakonstantinou Y., Supporting top-K keyword Search in XML Databases. International Conference on Data
Engineering (ICDE'10), 2010. pp. 689-700.

[25] Cheng T., Yan X., and Chang K. C., EntityRank: searching entities directly and holistically. Proceedings of the 33rd international

conference on Very Large Data Bases (VLDB'07), 2007. pp. 387-398.
[26] Chu E., et al., A relational approach to incrementally extracting and querying structure in unstructured data. Proceedings of the 33rd

international conference on Very Large Data Bases (VLDB '07), 2007. pp. 1045-1056

[27] Cimiano P., Handschuh S., and Staab S., Towards the Self-Annotating Web. In Proceedings of the International World Wide Web
Conference (WWW'04), 2004. pp. 462-471.

[28] Cormen T.H., et al., Introduction to Algorithms (3rd Ed.). MIT Press and McGraw-Hill. , 2009.

[29] Cui H., et al., Probabilistic Query Expansion Using Query Logs. In Proceedings of the 11th International World Wide Web
Conference (WWW'02), 2002. Honolulu, Hawaii, pp. 325-332.

[30] Das S., e.a., Making unstructured data sparql using semantic indexing in oracle database. In Proceedings of 29th IEEE ICDE Conf.,

2012. pp. 1405–1416
[31] Davies M., The Corpus of Contemporary American English as the first reliable monitor corpus of English. Literary & Linguistic

Computing, 2010. 25(4): 447-464.

[32] de Lima E.F. and Pedersen J.O., Phrase Recognition and Expansion for Short, Precision biased Queries based on a Query Log. In
International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999. pp. 145-152, Berkeley, CA.

[33] DeCandia G. et al., Dynamo: Amazon’s Highly Available Key-Value Store. Proc. ACM SIGOPS Symp. Operating Systems Principles

(SOSP 07), vol. 41, ACM Press, 2007. pp. 205–220.

[34] Devitt A. and Vogel C., The Topology of WordNet: Some Metrics. Proceedings of the Second Global Wordnet Conference (GWC),

2004. pp. 106-111.

[35] Ding B., et al., Finding top-k min-cost connected trees in databases. International Conference on Data Engineering (ICDE'07), 2007.
[36] Duchet P., Hypergraphs. In Graham R., Grotschel M., Lovasz L., eds.: Handbook of Combinatorics, 1995. Elsevier Science B.V.,

Amsterdam, pp. 381-432.

[37] Egozi O., Markovitch S., and Gabrilovich E., Concept-Based Information Retrieval Using Explicit Semantic Analysis. ACM
Transactions on Information Systems 2011. 29(2):8.

[38] Francis W. N. and Kucera H., Frequency Analysis of English Usage. Houghton Mifflin, Boston, 1982.

[39] Furnas G., et al., The vocabulary problem in human-system communication. . Communications of the ACM, 1987. 30(11):964–971.

[40] Gao X. and Qiu J., Supporting Queries and Analyses of Large-Scale Social Media Data with Customizable and Scalable Indexing
Techniques over NoSQL Databases. IEEE/ACM Inter. Symposium on Cluster Computing and the Grid (CCGRID'14), 2014, 587-590.

[41] Gauch S., Ravindran D., and Chandramouli A., KeyConcept: Conceptual Search and Pruning Exploiting Concept Relationships.

Journal of Intelligent Systems, 2010. 19(3): 265-288
[42] Giunchiglia F., Kharkevich U., and Zaihrayeu I., Concept Search. In ESWC - Semantics and Big Data, 2009. pp. 429–444.

[43] Greenberg J., Automatic Query Expansion via Lexical-Semantic Relationships. Journal of the American Society for Information

Science, 2001. 52(5):402–415.
[44] Grootjen F. and Van Der Weide T.P., Conceptual query expansion. Data Knowledge Engineering, 2006. 56:174–193.

[45] Hoffart J., et al., YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell., 2013. 194: 28-61.

[46] Hopfield J. and Tank D., Neural Computation of Decisions in Optimization Problems. . Biological Cybernetics, 1985. 52(3):52–141.
[47] Hristidis V., Gravano L., and Papakonstantinou Y., Efficient IR-style keyword search over relational databases. Proceedings of the

International Conference on Very Large Data Bases (VLDB'03), 2003. pp. 850-861.
[48] Huang J. and Abadi D., LEOPARD: Lightweight Edge-Oriented Partitioning and Replication for Dynamic Graphs. PVLDB, 2016.

9(7):540-551.

[49] Huawei-Hadoop, HIndex. https://github.com/Huawei-Hadoop/hindex, 2014. Accessed June 2018.
[50] Hudec M., An approach to fuzzy database querying, analysis and realization. Comput. Sci. Inf. Syst., 2009. 6(2): 127-140.

[51] Jones R., et al., Generating Query Substitutions. Inter. Conf. on World Wide Web, WWW ’06, 2006. pp. 387–396, New York, ACM.

[52] Kamvar M. and Baluja S., A Large Scale Study of Wireless Search Behavior: Google Mobile Search. In Proceedings of the SIGCHI
Conference on Computer Human Interaction, 2006. pp. 701–709, Montreal, Canada.

[53] Kathuria A., et al., Classifying the User Intent of Web Queries using K-means Clustering. Internet Research, 2010. 20(5): 563-581.

[54] Kumar S., Rana R.K., and Singh P., Ontology based Semantic Indexing Approach for Information Retrieval System. International
Journal of Computer Applications, 2012. Volume 49– No.12.

[55] L'Hadj L.S., Boughanem M., and Amrouche K., Enhancing Information Retrieval through Concept-based Language Modeling and

Semantic Smoothing. Journal of the Association for Information Science and Technology (JASIST), 2016. 67(12): 2909-2927.
[56] Lester N., Zobel J., and Williams H., Efficient online index maintenance for contiguous inverted lists. Information Processing and

Management, 2006. 42(4):916- 933.

[57] Li F. and J. H.V., Constructing an Interactive Natural Language Interface for Relational Databases. Proceedings of the VLDB
Endowment, 2014. pp. 73-84.

[58] Li Y., Yang H., and Jagadish H.V., Term Disambiguation in Natural Language Query for XML. In Proceedings of the International

Conference on Flexible Query Answering Systems (FQAS), 2006. LNAI 4027, pp. 133–146.
[59] Liu Y., et al., Using WordNet to Disambiguate Word Senses for Text Classification. International Conference on Computational

Science (ICCS'07), 2007. pp 781-789.

[60] Luo Y., et al., Spark: top-k keyword query in relational databases. Proceedings of the 2007 ACM International Conference on
Management of Data (SIGMOD-07), 2007. pp. 115-126.

[61] Mahapatra A.K. and Biswas S., Inverted Index: Types and techniques. International journal of Computer science Issues,, 2011. 8(4):1.

[62] Manning C.D., Raghavan P., and Schütze H., Introduction to Information Retrieval. Cambridge University Press, 2008. Ch. 1. Boolean
Retrieval - A First Take at Building an Inverted Index, https://nlp.stanford.edu/IR-book/

[63] Markowetz A. and Yang Y., Keyword search on relational data streams. International Conference on Management of Data

(SIGMOD'07), 2007. pp. 605–616.
[64] Martinenghi D. and Torlone R., Taxonomy-based relaxation of query answering in relational databases. VLDB Journal, 2014.

23(5):747-769.

[65] McGill M., Introduction to Modern Information Retrieval. 1983. McGraw-Hill, New York.
[66] Miller G.A. and Fellbaum C., WordNet Then and Now. Language Resources and Evaluation, 2007. 41(2): 209-214.

[67] Mishra C. and Koudas N., Interactive Query Refinement Inter. Conf. on Extending Database Technology (EDBT'09), 2009, 862-873.

[68] Mitra M., Singhal A., and Buckley C., Improving Automatic Query Expansion. In the in 21st International Conference on Research &
Development on Information Retrieval, 1998. Melbourne, Australia, pp. 206-214.

[69] Navigli R., Word Sense Disambiguation: a Survey. ACM Computing Surveys, 2009. 41(2):1–69.

[70] Navigli R., et al., Extending and Enriching WordNet with OntoLearn. Proc. of The Second Global Wordnet Conference 2004
(GWC'04), 2004. pp. 279–284.

[71] Navigli R. and Crisafulli G., Inducing Word Senses to Improve Web Search Result Clustering. In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, 2010. pp. 116–126, MIT, USA.
[72] Navigli R. and Velardi P., An Analysis of Ontology-based Query Expansion Strategies. In proceedings of the International Joint

Conferences on Artificial Intelligence (IJCAI'03), 2003. pp. 42-49.

[73] Nihalani N., Silakari S., and Motwani M., Natural language Interface for Database: A Brief review. International Journal of Computer
Science Issues, 2011. 8(2):600-608.

[74] Philippe C.-M. et al., NoSQL Databases for RDF: An Empirical Evaluation. Inter. Semantic Web Conf. (ISWC'13), 2013. pp 310-325.

[75] Reynolds P. and Vahdat A., Peer-to-Peer Keyword Search: A Retrospective. Middleware, 2013. pp. 485-496.
[76] Salton G. and C. Buckley, Improving Retrieval Performance by Relevance Feedback. Journal of the American Society for Information

Science, 1990. 41(4):288–297.

[77] Schoefeggera K., et al., A survey on socio-semantic information retrieval. Computer Science Review, 2013. 8:25–46.
[78] Schuetze H. and Pedersen J. O., Information Retrieval based on Word Senses. In Proceedings of the 4th Annual Symposium on

Document Analysis and Information Retrieval. , 1995. pp. 161–175.

[79] Seo C., et al., An efficient inverted index technique for xml documents using RDBMS. Information & Software Technology, 2003.
45(1):11-22.

[80] Sinh Hoa Nguyen, et al., Semantic Evaluation of Search Result Clustering Methods. Intelligent Tools for Building a Scientific
Information Platform, Studies in Computational Intelligence Volume 467, 2013. 467(393-414).

[81] Tekli J., An Overview on XML Semantic Disambiguation from Unstructured Text to Semi-Structured Data: Background, Applications,

and Ongoing Challenges. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2016. 28(6): 1383-1407.
[82] Tekli J., et al., Building Semantic Trees from XML Documents. Elsevier Journal of Web Semantics (JWS): Science, Services and

Agents on the World Wide Web, 2016. 37–38:1–24.

[83] Tekli J., et al., Minimizing User Effort in XML Grammar Matching. Elsevier Information Sciences Journal, 2012. 210:1-40.
[84] Thomson A. et al., Calvin: fast distributed transactions for partitioned database systems. Inter. ACM SIGMOD Conf., 2012. pp. 1-12.

[85] Velardi P., et al., OntoLearn Reloaded: A Graph-Based Algorithm for Taxonomy Induction. Computational Linguistics, 2013. 39(3):

665-707.
[86] von der Weth C. and Datta A., Multiterm Keyword Search in NoSQL Systems. IEEE Internet Computing, 2012. 16(1):34-42

[87] Weeds J., et al., Characterising measures of lexical distributional similarity. Int. Conf. on Computational Linguistics (COLING '04),

2004. Article No. 1015.
[88] Wen H., Huang G.S., and L. Z., Clustering web search results using semantic information International Conference on Machine

Learning and Cybernetics, 2009. 3(1504 - 1509).

[89] Wu P., et al., Towards keyword-driven analytical processing. Inter. Conf. on Management of Data (SIGMOD'07), 2007. pp. 617–628.
[90] Yaworsky D., Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora. Proceedings of

the International Conference on Computational Linguistics (Coling), 1992. Vol 2, pp. 454-460. Nantes.

[91] Zhang P., A Study on Database Fuzzy Query Method in SQL. Inter. Conf. on Advances in Engineering, 2011. Vol. 24, pp. 340-344.
[92] Zhong S., et al., A Design of the Inverted Index Based on Web Document Comprehending. Journal of Computers, 2011. 6(4):664-670.

Appendix I: Experimental Test Data Characteristics and Results

Table 7. Characteristics of IMDB movies table chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 7.6183 15.0223 22.1164 29.7024 37.0124 43.8552 52.0411 58.5117 66.7324 74.1111

N# of data objects 14,304 28,608 42,912 57,217 71,521 85,825 100,130 114,434 128,738 143,043

N# of Attributes
1
 70,511 124,139 196,844 204,914 296,858 377,915 446,181 520,983 594,267 671,946

N# of Terms 638,459 1,209,423 1,967,252 2,534,272 3,199,881 4,014,704 4,723,916 5,337,436 6,225,128 7,046,035

Size (in MBs) of InvIndex 24.0366 48.193 70.9162 92.3598 115.9013 138.9912 160.0991 189.8099 214.5981 237.6099

Table 8. Characteristics of WordNet chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 2.7707 3.9466 7.6498 9.5691 12.1641 13.8941 18.2191 19.9491 23.4091 26.0041

N# of Senses (Synsets) 11,738 23,475 35,212 46,949 58,686 70,423 82,160 93,897 105,634 117,371

Avg. Branch2 1.4533 1.6257 1.7553 1.9236 2.0697 2.2259 2.3736 2.5285 2.6677 2.8223

Size (in MBs) of InvIndex 3.2031 4.5625 8.8437 11.0625 14.0625 16.0625 21.0625 23.0625 27.0625 30.0625

Table 9. Characteristics of SemIndex+ chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 36.9219 68.2188 100.2813 133.3281 158.3594 202.4063 237.4688 273.5156 306.5938 339.625

N# of Data Nodes 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043

N# of Attribute Nodes
2
 5 5 5 5 5 5 5 5 5 5

N# of Attribute Node Occurrences 70,511 124,139 196,844 204,914 296,858 377,915 446,181 520,983 594,267 671,946

N# of (Matching) Index Term Nodes 19090 36396 52388 67511 82370 96231 108828 122119 134258 146625

N# of (Missing) Index Terms Nodes 54165 79174 101594 121078 141534 158663 174111 186930 195897 210279

N# of Sense Nodes (Synsets) 11738 23475 35212 46949 58686 70423 82160 93897 105634 117371

Total N# of Nodes 99302 167658 232111 292760 354116 411147 465234 517385 564532 617323

Avg. Branch 1.7746 4.2493 5.8399 7.5746 8.6564 9.2882 9.9577 10.575 10.9745 11.3173

Table 10. Characteristics of InvIndex (w.r.t. IMDB) chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 25.5781 49.6250 73.6719 98.7188 122.7656 147.8125 171.8594 195.8906 220.9375 244.9844

N# of Data Objects 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043

N# of Index Terms 73255 115570 153982 188589 223904 254894 282939 309049 330155 356904

1 Number of attribute occurrences in all data objects of the IMDB movies dataset.
2 The number of attribute nodes in our current SemIndex+ graph is equal to 5 (denoting title, year, plot, genre and info) regardless of chunk

size, since attribute nodes are added once to the index (cf. ER model in Fig. 10) following their first occurrence in the dataset, and are

then referenced as many times as needed to construct 3-uniform data edges (corresponding to the number of attribute node occurrences).

Table 11. Precision, recall, f-value, and MAP results obtained with SemIndex+ querying versus alternative solutions,

averaged per link distance () and per number of terms (k).

a. Average precision (PR) results

 =1 =2 =3 =4 =5 k=2 k=3 k=4 k=5 Avg.

SemIndex+ 0.2758 0.3234 0.5193 0.3805 0.3189 0.4226 0.3632 0.2502 0.4184 0.3636

InvIndex 0.2758 (invariant with) 0.6032 0.5000 0.0000 0.0000 0.2758

QueryRelax 0.2179 (invariant with) 0.4243 0.1440 0.2233 0.0800 0.2179

QueryDisam 0.2639 (invariant with) 0.6032 0.1183 0.2108 0.1233 0.2639

QueryRefine 0.3762 (invariant with) 0.5562 0.3485 0.2667 0.3333 0.3762

b. Average recall (R) results

SemIndex+ 0.0327 0.0570 0.1487 0.3358 0.4684 0.2570 0.2219 0.1656 0.1895 0.2085

InvIndex 0.0327 (invariant with) 0.0943 0.0365 0.0000 0.0000 0.0327

QueryRelax 0.1412 (invariant with) 0.1178 0.1474 0.1889 0.1108 0.1412

QueryDisam 0.1281 (invariant with) 0.0943 0.1089 0.1644 0.1447 0.1281

QueryRefine 0.0508 (invariant with) 0.0943 0.0365 0.0000 0.0000 0.0508

c. Average f-value results

SemIndex+ 0.1543 0.1902 0.3340 0.3581 0.3711 0.3398 0.2888 0.1937 0.3038 0.2815

InvIndex 0.1543 (invariant with) 0.3488 0.2683 0.0000 0.0000 0.1543

QueryRelax 0.1796 (invariant with) 0.2711 0.1457 0.2061 0.0954 0.1796

QueryDisam 0.1960 (invariant with) 0.3488 0.1136 0.1876 0.1340 0.1960

QueryRefine 0.2135 (invariant with) 0.3488 0.2683 0.0000 0.0000 0.2135

d. Average mean average precision (MAP) results

SemIndex+ 0.0273 0.0443 0.0982 0.2264 0.3002 0.1708 0.1222 0.1377 0.1264 0.1393

InvIndex 0.0273 (invariant with) 0.0776 0.0317 0.0000 0.0000 0.0273

QueryRelax 0.0527 (invariant with) 0.0599 0.0558 0.0829 0.0120 0.0527

QueryDisam 0.0570 (invariant with) 0.0814 0.0814 0.0814 0.0814 0.0570

QueryRefine 0.0394 (invariant with) 0.0872 0.0481 0.0162 0.0061 0.0394

Table 12. Percentages of increase in query execution time and query result quality, when using SemIndex+ versus

alternatives solutions.

a. Percentage of increase in query execution time (Efficiency 100)

 =1 =2 =3 =4 =5 k=2 k=3 k=4 k=5 Avg.

InvIndex 0.59% 503.50% 1273.76% 2600.51% 4195.00% 1231.06% 1393.27% 1321.47% 2020.51% 1701.74%

QueryRelax -5.90%1 464.52% 1185.03% 2426.09% 3917.60% 2032.25% 1127.12% 1480.63% 1286.97% 1622.48%

QueryDisam -93.07% -58.42% -5.34% 86.07% 195.94% 23.07% 6.19% -8.31% 86.81% 26.88%

QueryRefine -93.24% -59.45% -7.69% 81.45% 188.59% 35.48% 0.08% 5.60% 31.89% 21.83%

b. Percentage of increase in query result quality (Effectiveness 100)

InvIndex 0.00% 61.99% 258.95% 727.99% 997.79% 119.96% 285.04% 1276.85% 1164.46% 543.67%

QueryRelax -48.08% -15.90% 86.36% 329.88% 469.95% 184.92% 119.06% 66.02% 952.53% 238.31%

QueryDisam -52.00% -22.24% 72.30% 297.44% 426.95% 109.80% 151.04% 103.40% 320.13% 156.31%

QueryRefine -30.58% 12.46% 149.19% 474.80% 662.09% 95.81% 154.21% 749.38% 1986.36% 472.64%

Appendix II: Missing Terms Linkage Algorithm

Connecting unmapped searchable term nodes from G . iV to KBG . iV , which we identify as missing terms in SIG , can

be handled using an adaptation of distributional thesauri construction methods, e.g., [18, 87], to allow mining the

syntactic/lexical relatedness between the missing terms and the index terms in SIG . Note that a distributional thesaurus

is a thesaurus generated automatically from a given textual corpus (such as the Brown corpus [38], COCA [31], or

even the textual collection being indexed), by finding words that co-occur together or that have similar contexts in

the corpus. To that end, we introduce the MissingTerms_Linkage algorithm in Fig. 18. It accepts as input: the

SemIndex+ graph SIG , a reference text corpus C, as well as two input parameters: c1 and c2 designating respectively

the co-occurrence window size and the number of top-ranked terms needed to identify related terms. For each missing

term ti in SIG (cf. Fig. 18.b, line 1), the algorithm creates a relatedness vector RV(ti) (line 3) to store the co-occurrence

1 A negative percentage of increase underlines a decrease percentage.

frequencies of surrounding terms. It identifies a window of size c1, consisting of c1 terms occurring to the left and right

of the missing term in the reference corpus and which also exist among the index terms of SIG (line 4), and adds all

window term frequencies to the relatedness vector (line 5). For example, suppose “horror” is a missing term, i.e., it

does not appear in the WordNet lexicon extract but appears in object O1 of the data collection (cf. Fig. 5). If window

size c1 = 2, using the data collection itself Part as reference corpus, then terms “strange”, “car”, “thriller” and

“cell” would be in the surrounding window of “horror”, and hence the relatedness score between “horror” and all

these terms is increased. Once the vector has been obtained, we normalize vector scores w.r.t. overall maximum term

co-occurrence frequency (line 6), and identify the c2 top-ranked terms of the missing term ti, which are considered as

the most related terms to ti in SIG (line 7). Then, a link is created to connect ti’s term node with each top-ranked term

tk node in SIG . These links are represented as index edges in SIG .Ei labeled: occurs-with (cf. Fig. 7 where term

“horror” links with “car”, considered as its most related (top-ranked, i.e., highest co-occurrence frequency) term1).

Algorithm MissingTerms_Linkage

Input: SIG // SemIndex+ graph

 C // Reference text corpus
 c1, c2 // Input parameters: window size and top-ranked terms

Ouput: SIG // SemIndex+ graph with missing term links

Begin

For each missing term ti in SIG

 {

 Create RV(ti) from C given SIG // Relatedness vector for term ti

 For each term tj in window(ti, c1, C)

 { Add Freq(tj) to RV(ti) }

 RV(ti) = RV(ti) / Max(RV(ti)) // Normalizing RV(ti) scores

 Ti = set of c2 top-ranked terms in RV(ti)

 For each term tk in Ti

 { Create link between term nodes ti and tk in SIG

 Label the link “occurs-with” }

}

Return SIG

End

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 18. Pseudocode of the MissingTerms_Linkage algorithm.

Note that the effectiveness of algorithm MissingTerms_Linkage depends on the number of missing terms, which

in turn depends on the semantic coverage and expressiveness of the knowledge base used and its relatedness with the

input textual collection (e.g., using a medical knowledge base to semantically map terms in a textual collection

describing sports events will obviously lead to a substantial number of missing terms in the resulting SemIndex+

graph, thus negatively affecting index construction performance). The algorithm’s impact on SemIndex+ querying

effectiveness and efficiency will be evaluated in a dedicated future study.

Appendix III: Alternative Algorithms used in our Experimental Study

1. Legacy Inverted Index Search (InvIndex)

It's a standard containment keyword-based query [62] that:

1- Retrieves textual identities that contain a set of keywords,

2- Queries the inverted (term, objectIDs[]) list with every term in the query, to identify objects IDs associated to all

(or at least one) query terms (based on the query type at hand: conjunctive or disjunctive),

3- Assigns a score to every potential query answer (data object) considering a predefined relevance ordering

scheme, in order to return the results ranked by their order of scores in ascending order.

1 A missing term can link with more than one (top-ranked) related terms, if more than one related terms were ranked with the same
maximum co-occurrence frequency with the missing term.

2. Query Relaxation (QueryRelax)

It consists in expanding the user query to include more interesting (semantically related) words [64], which would

help identify more interesting results. The main steps of the algorithm can be described as follows:

1- Perform Part-Of-Speech tagging,

2- Select the most common sense for each token (e.g., based on WordNet’s usage frequency, computed based on

the Brown text corpus),

3- For each selected sense si, include in the query: synonymous terms in the synset that is si, as well as the

synonymous terms of all senses included in the direct semantic context of si [82], i.e., senses that are related to si

via a semantic relationship (e.g., hypernymy, hyponymy, meronymy, etc.),

4- Run the resulting query using InvIndex, as a traditional keyword containment query on the data collection’s

inverted index (syntactic processing), and return the results to the user.

3. Query Disambiguation (QueryDisam)

It consists in applying word sense disambiguation [81] on query keywords, associating every keyword with its proper

meaning (i.e., synset in WordNet) in order to execute the query accordingly [7]. The main steps of the algorithm can

be described as follows:

1- Perform WSD on query terms using the simplified Lesk algorithm [3],

2- For each of the identified senses, include in the query: the sense’s synonymous terms,

3- Run the resulting query using InvIndex, and return the results to the user

4. Query Refinement (QueryRefine)

It consists in refining the user query to remove certain terms and include more (semantically) descriptive terms, which

would help identify more interesting results [67]. The main steps of the algorithm can be described as follows:

1- Run the InvIndex algorithm on the original query, and return the query results to the user,

2- For every term of the original query, provide the user with alternative suggestions in the form of a list of

semantically related terms: the synonyms of all possible senses (synsets) of the query term,

3- Allow the user to add and remove terms to/from the original query, considering system provided suggestions

(step 2) or her own choice of terms,

4- Run the refined query using InvIndex, and return the results to the user

